Change search
ReferencesLink to record
Permanent link

Direct link
Micromechanical Modeling of Anisotropic Damage-Induced Permeability Variation in Crystalline Rocks
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
2014 (English)In: Rock Mechanics and Rock Engineering, ISSN 0723-2632, E-ISSN 1434-453X, Vol. 47, no 5, 1775-1791 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.

Place, publisher, year, edition, pages
2014. Vol. 47, no 5, 1775-1791 p.
Keyword [en]
Damage, Permeability, Micromechanics, Crystalline rocks
National Category
Geotechnical Engineering
URN: urn:nbn:se:kth:diva-153267DOI: 10.1007/s00603-013-0485-5ISI: 000341378300020ScopusID: 2-s2.0-84907304201OAI: diva2:753842

QC 20141009

Available from: 2014-10-09 Created: 2014-10-03 Last updated: 2014-10-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jing, Lanru
By organisation
Sustainable development, Environmental science and Engineering
In the same journal
Rock Mechanics and Rock Engineering
Geotechnical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link