Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Parameter optimization of linear ordinary differential equations with application in gene regulatory network inference problems
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Parameteroptimering av linjära ordinära differentialekvationer med tillämpningar inom inferensproblem i regulatoriska gennätverk (Swedish)
Abstract [en]

In this thesis we analyze parameter optimization problems governed by linear ordinary differential equations (ODEs) and develop computationally efficient numerical methods for their solution. In addition, a series of noise-robust finite difference formulas are given for the estimation of the derivatives in the ODEs. The suggested methods have been employed to identify Gene Regulatory Networks (GRNs).

GRNs are responsible for the expression of thousands of genes in any given developmental process. Network inference deals with deciphering the complex interplay of genes in order to characterize the cellular state directly from experimental data. Even though a plethora of methods using diverse conceptual ideas has been developed, a reliable network reconstruction remains challenging. This is due to several reasons, including the huge number of possible topologies, high level of noise, and the complexity of gene regulation at different levels. A promising approach is dynamic modeling using differential equations. In this thesis we present such an approach to infer quantitative dynamic models from biological data which addresses inherent weaknesses in the current state-of-the-art methods for data-driven reconstruction of GRNs. The method is computationally cheap such that the size of the network (model complexity) is no longer a main concern with respect to the computational cost but due to data limitations; the challenge is a huge number of possible topologies. Therefore we embed a filtration step into the method to reduce the number of free parameters before simulating dynamical behavior. The latter is used to produce more information about the network’s structure.

We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise on a 1565-gene E.coli gene regulatory network. We show the computation time over various network sizes and estimate the order of computational complexity. Results on five networks in the benchmark collection DREAM4 Challenge are also presented. Results on five networks in the benchmark collection DREAM4 Challenge are also presented and show our method to outperform the current state of the art methods on synthetic data and allows the reconstruction of bio-physically accurate dynamic models from noisy data.

Abstract [sv]

I detta examensarbete analyserar vi parameteroptimeringsproblem som är beskrivna med ordinära differentialekvationer (ODEer) och utvecklar beräkningstekniskt effektiva numeriska metoder för att beräkna lösningen. Dessutom härleder vi brusrobusta finita-differens approximationer för uppskattning av derivator i ODEn. De föreslagna metoderna har tillämpats för regulatoriska gennätverk (RGN).

RGNer är ansvariga för uttrycket av tusentals gener. Nätverksinferens handlar om att identifiera den komplicerad interaktionen mellan gener för att kunna karaktärisera cellernas tillstånd direkt från experimentella data. Tillförlitlig nätverksrekonstruktion är ett utmanande problem, trots att många metoder som använder många olika typer av konceptuella idéer har utvecklats. Detta beror på flera olika saker, inklusive att det finns ett enormt antal topologier, mycket brus, och komplexiteten av genregulering på olika nivåer. Ett lovande angreppssätt är dynamisk modellering från biologiska data som angriper en underliggande svaghet i den för tillfället ledande metoden för data-driven rekonstruktion. Metoden är beräkningstekniskt billig så att storleken på nätverket inte längre är huvudproblemet för beräkningen men ligger fortfarande i databegränsningar. Utmaningen är ett enormt antal av topologier. Därför bygger vi in ett filtreringssteg i metoder för att reducera antalet fria parameterar och simulerar sedan det dynamiska beteendet. Anledningen är att producera mer information om nätverkets struktur.

Vi utvärderar metoden på simulerat data, och studierar dess prestanda med avseende på datastorlek och brusnivå genom att tillämpa den på ett regulartoriskt gennätverk med 1565-gen E.coli. Vi illustrerar beräkningstiden över olika nätverksstorlekar och uppskattar beräkningskomplexiteten. Resultat på fem nätverk från DREAM4 är också presenterade och visar att vår metod har bättre prestanda än nuvarande metoder när de tillämpas på syntetiska data och tillåter rekonstruktion av bio-fysikaliskt noggranna dynamiska modeller från data med brus.

Place, publisher, year, edition, pages
2014.
Series
TRITA-MAT-E, 2014:60
Keyword [en]
Ordinary differential equations, parameter optimization, gene regulatory network inference, DREAM4 project
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-154034OAI: oai:DiVA.org:kth-154034DiVA: diva2:754702
External cooperation
Karolinska Institutet, Unit of Computational Medicine, Sweden
Subject / course
Scientific Computing
Educational program
Master of Science - Computer Simulation for Science and Engineering
Supervisors
Examiners
Available from: 2014-10-11 Created: 2014-10-11 Last updated: 2014-10-11Bibliographically approved

Open Access in DiVA

fulltext(1112 kB)412 downloads
File information
File name FULLTEXT01.pdfFile size 1112 kBChecksum SHA-512
d2fba7743851f4ebcef0b48f00b489a31281a143285b5af193dd0e962640e6cec3c20a54393e1cb8957dc36e574533bb43fbc4aa69ec8d38f64c115dffe5141e
Type fulltextMimetype application/pdf

By organisation
Numerical Analysis, NA
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 412 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 234 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf