Change search
ReferencesLink to record
Permanent link

Direct link
Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines
Show others and affiliations
2014 (English)In: Particle and Fibre Toxicology, ISSN 1743-8977, Vol. 11, 41- p.Article in journal (Refereed) Published
Abstract [en]

Background: The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide-and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). Methods: The metal oxide-and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, gamma-H(2)AX and RAD51 foci formation). Results: We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. Conclusions: We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.

Place, publisher, year, edition, pages
2014. Vol. 11, 41- p.
Keyword [en]
Metal oxide nanoparticles, Nanomaterials, ToxTracker, High-throughput screening, Genotoxicity, Oxidative stress, Reporter cells
National Category
Other Earth and Related Environmental Sciences
URN: urn:nbn:se:kth:diva-153851DOI: 10.1186/s12989-014-0041-9ISI: 000341889000001ScopusID: 2-s2.0-84908148990OAI: diva2:754870
Swedish Research Council, 2011-0832

QC 20141013

Available from: 2014-10-13 Created: 2014-10-09 Last updated: 2014-10-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Odenevall Wallinder, Inger
By organisation
Surface and Corrosion Science
In the same journal
Particle and Fibre Toxicology
Other Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link