Change search
ReferencesLink to record
Permanent link

Direct link
Accessing different spin-disordered states using first-order reversal curves
Show others and affiliations
2014 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, no 10, 104410- p.Article in journal (Refereed) Published
Abstract [en]

Combined first-order reversal curve (FORC) analyses of the magnetization (M-FORC) and magnetoresistance (MR-FORC) have been employed to provide a comprehensive study of the M-MR correlation in two canonical systems: a NiFe/Cu/FePt pseudo spin valve (PSV) and a [Co/Cu](8) multilayer. In the PSV, due to the large difference in switching fields and minimal interactions between the NiFe and the FePt layers, the M and MR show a simple one-to-one relationship during reversal. In the [Co/Cu](8) multilayer, the correlation between the magnetization reversal and the MR evolution is more complex. This is primarily due to the similar switching fields of, and interactions between, the constituent Co layers. The FORC protocol accesses states with much higher spin disorders and larger MRs than those found along the conventional major loop field cycle. Unlike the M-FORC measurements, which only probe changes in the macroscopic magnetization, the MR-FORCs are more sensitive to the microscopic domain configurations as those are most important in determining the resultant MR effect size. This approach is generally applicable to spintronic systems to realize the maximum spin disorder and the largest MR.

Place, publisher, year, edition, pages
2014. Vol. 90, no 10, 104410- p.
National Category
Condensed Matter Physics
URN: urn:nbn:se:kth:diva-153847DOI: 10.1103/PhysRevB.90.104410ISI: 000341910100001ScopusID: 2-s2.0-84948650797OAI: diva2:754947
Swedish Research CouncilSwedish Foundation for Strategic Research Knut and Alice Wallenberg Foundation

QC 20141013

Available from: 2014-10-13 Created: 2014-10-09 Last updated: 2014-10-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zha, ChaolinÅkerman, Johan
By organisation
Material Physics, MF
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link