Change search
ReferencesLink to record
Permanent link

Direct link
Mechano-biology in the thoracic aortic aneurysm: a review and case study
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Biomechanics.
2014 (English)In: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 13, no 5, 917-928 p.Article, review/survey (Refereed) Published
Abstract [en]

An aortic aneurysm is a permanent and localized dilatation of the aorta resulting from an irreversible loss of structural integrity of the aortic wall. The infrarenal segment of the abdominal aorta is the most common site of aneurysms; however, they are also common in the ascending and descending thoracic aorta. Many cases remain undetected because thoracic aortic aneurysms (TAAs) are usually asymptomatic until complications such as aortic dissection or rupture occurs. Clinical estimates of rupture potential and dissection risk, and thus interventional planning for TAAs, are currently based primarily on the maximum diameter and growth rate. The growth rate is calculated from maximum diameter measurements at two subsequent time points; however, this measure cannot reflect the complex changes of vessel wall morphology and local areas of weakening that underline the strong regional heterogeneity of TAA. Due to the high risks associated with both open and endovascular repair, an intervention is only justified if the risk for aortic rupture or dissection exceeds the interventional risks. Consequently, TAAs clinical management remains a challenge, and new methods are needed to better identify patients for elective repair. We reviewed the pathophysiology of TAAs and the role of mechanical stresses and mathematical growth models in TAA management; as a proof of concept, we applied a multiscale biomechanical analysis to a case study of TAA.

Place, publisher, year, edition, pages
2014. Vol. 13, no 5, 917-928 p.
Keyword [en]
Thoracic aortic aneurysm, Biomechanics, Multiscale, Finite element analysis
National Category
Biophysics Mechanical Engineering
URN: urn:nbn:se:kth:diva-153840DOI: 10.1007/s10237-014-0557-9ISI: 000341782900001ScopusID: 2-s2.0-84920249647OAI: diva2:755163

QC 20141014

Available from: 2014-10-14 Created: 2014-10-09 Last updated: 2014-10-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gasser, Christian
By organisation
In the same journal
Biomechanics and Modeling in Mechanobiology
BiophysicsMechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link