Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An empirical aggregate throughput model for dense WLANs
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab). KTH, School of Information and Communication Technology (ICT), Centres, Center for Wireless Systems, Wireless@kth.
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab). KTH, School of Information and Communication Technology (ICT), Centres, Center for Wireless Systems, Wireless@kth.ORCID iD: 0000-0001-7642-3067
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab). KTH, School of Information and Communication Technology (ICT), Centres, Center for Wireless Systems, Wireless@kth.ORCID iD: 0000-0003-4986-6123
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Due to the popularity of WLANs based on the IEEE 802.11 standard, these WLANs are being deployed in close proximity of each other in urban office and residential environments. This dense deployment of WLANs, in combination with the complex indoor propagation environment created by walls, make the performance analysis of such a system of WLANs difficult. Existing WLAN throughput models cannot accurately represent the aggregate throughput performance of these systems. Performing a packet-level analysis of each system of WLANs would be accurate but costly in time and computational resources. In this work, we propose an empirical aggregate throughput model for a system of densely deployed WLANs based on a comprehensive simulation analysis of such WLANs using OPNET. Our proposed model can estimate the throughput performance of a system of WLANs with fairly good accuracy in a range of propagation environments, deployment densities, deployment and association types.

National Category
Communication Systems Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-154340OAI: oai:DiVA.org:kth-154340DiVA: diva2:756569
Note

QS 2014

Available from: 2014-10-17 Created: 2014-10-17 Last updated: 2014-10-20Bibliographically approved
In thesis
1. Capacity analysis of densely deployed wireless LANs
Open this publication in new window or tab >>Capacity analysis of densely deployed wireless LANs
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wireless LANs (WLANs) based on the IEEE 802.11 standard have become an integral part of today’s indoor wireless communication infrastructure. As WLAN deployments become more prevalent and densely deployed, the nodes in these WLANs start to create congestion and interference with each other. This congestion and interference fundamentally limits the performance of these coexisting WLANs. We analyze the capacity limits of such densely deployed WLANs.

We begin our analysis by investigating the suitability of the attributes of WLANs, namely their cooperative operation based on locally available information, for indoor high-capacity wireless access provisioning. We compare the cooperative class of wireless systems with another class of systems whose users behave selfishly. Following this qualitative assessment, we perform a detailed, qualitative analysis of the capacity of densely deployed WLANs in terms of a number of key environmental and operational parameters. The indoor propagation environment has a significant influence on the congestion and interference that these coexisting WLANs exert on each other. Therefore we investigate the impact of propagation environment on the aggregate throughput of densely deployed WLANs. As WLANs are deployed in close proximity of each other, the transmissions in one WLAN start to influence the outcome of transmissions in other WLANs. The manner in which the access points are deployed, and the manner in which stations associate themselves with the available access points around themselves is shown to be an influential factor in the performance of these coexisting WLANs. Therefore, we investigate the impact of random versus planned access point deployment on performance of densely deployed WLANs. Similarly, we investigate the impact of stations associating with the access point with the strongest signal or with another sufficiently strong access point in their vicinity. Furthermore, we investigate the throughput of densely deployed WLANs when operating with bounded delay. More specifically we examine the case when the input traffic arriving at the transmitters are expected to reach their destination within a certain time period, thus the transmit queues cannot grow without bounded and the system should operate at a stable point.

The indoor propagation environment, creates complex interference relationships between nodes in coexisting WLANs.These complex interference relationships are compounded by the node interactions dictated by the nonlinear algorithms in the IEEE 802.11 MAC protocol, thus the problem of estimating the performance of these coexisting WLANs by means of simple analytical models becomes difficult. In contrast, detailed packet level simulations provide accurate performance estimates, although such analyses are computationally expensive. Therefore we seek to provide a model to estimate the throughput of densely deployed WLANs based on empirical throughput results of detailed simulations of such densely deployed WLANs. In addition, in our effort to develop an empirical throughput model for densely deployed WLANs, we develop a measure which we call “cell congestion” to be able to order and compare different propagation environments, and an “effective density” concept which accounts for the influence of the propagation environment on the congestion and interference experienced by a WLAN deployment of a given density. We expect these concepts to be useful in improving the operation of WLANs to be able to meet the predicted increase in demand for capacity.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. x, 91 p.
Series
TRITA-ICT-COS, ISSN 1653-6347 ; 1410
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-154343 (URN)
Public defence
2014-10-24, Sal A, Electrum 1, KTH, Isafjordsgatan 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Wireless@kth
Note

QC 20141020

Available from: 2014-10-20 Created: 2014-10-17 Last updated: 2014-10-23Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Sung, Ki WonZander, Jens

Search in DiVA

By author/editor
Ozyagci, AliSung, Ki WonZander, Jens
By organisation
Radio Systems Laboratory (RS Lab)Center for Wireless Systems, Wireless@kth
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 388 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf