Change search
ReferencesLink to record
Permanent link

Direct link
The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.ORCID iD: 0000-0001-7657-3794
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). (BiMaC Innovation)ORCID iD: 0000-0001-8699-7910
2014 (English)In: Experimental mechanics, ISSN 0014-4851, E-ISSN 1741-2765, Vol. 54, no 8, 1329-1341 p.Article in journal (Refereed) Published
Abstract [en]

To model advanced 3-D forming strategies for paper materials, the effects of environmental conditions on the mechanical behavior must be quantitatively and qualitatively understood. A tensile test method has been created, verified, and implemented to test paper at various moisture content and temperature levels. Testing results for one type of paper for moisture contents from 6.9 to 13.8 percent and temperatures from 23 to 168 degrees Celsius are presented and discussed. Coupled moisture and temperature effects have been discovered for maximum stress. Uncoupled effects have been discovered for elastic modulus, tangent modulus, hardening modulus, strain at break, tensile energy absorption (TEA), and approximate plastic strain. A hyperbolic tangent function is also utilized which captures the entire one-dimensional stress-strain response of paper. The effects of moisture and temperature on the three coefficients in the hyperbolic tangent function may be assumed to be uncoupled, which may simplify the development of moisture- and temperature-dependent constitutive models. All parameters were affected by both moisture and temperature with the exception of TEA, which was found to only be significantly dependent on temperature.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2014. Vol. 54, no 8, 1329-1341 p.
Keyword [en]
Moisture, Temperature, Elastic properties, Plastic properties, Forming, Paper
National Category
Materials Engineering
URN: urn:nbn:se:kth:diva-154368DOI: 10.1007/s11340-014-9898-7ISI: 000341812900003ScopusID: 2-s2.0-84907704336OAI: diva2:756953

QC 20141020

Available from: 2014-10-20 Created: 2014-10-20 Last updated: 2015-09-07Bibliographically approved
In thesis
1. Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
Open this publication in new window or tab >>Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated.

In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C.

In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process.

In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.

Abstract [sv]

Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser.

I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C.

I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas.

I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 25 p.
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 576
3-D forming, constitutive model, moisture, temperature, hydroforming, deep drawing, 3-D formning, finitaelement, konstitutiv modell, fukt, temperatur, hydroformning, djup dragning
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
urn:nbn:se:kth:diva-173009 (URN)978-91-7595-670-1 (ISBN)
2015-09-24, Hållfasthetsläras Seminarierummet, Teknikringen 8D, KTH, Stockholm, 12:15 (English)

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved

Open Access in DiVA

CombinedEffectsMoistureTemperature(652 kB)84 downloads
File information
File name FULLTEXT01.pdfFile size 652 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusThe final publication is available at

Search in DiVA

By author/editor
Linvill, EricÖstlund, Sören
By organisation
Solid Mechanics (Dept.)VinnExcellence Center BiMaC InnovationBiofibre Materials Centre, BiMaC
In the same journal
Experimental mechanics
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 84 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 106 hits
ReferencesLink to record
Permanent link

Direct link