Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of dynamical states of random networks with human EEG
Institute of Biology III, Albert-Ludwigs-University, Germany .ORCID iD: 0000-0002-8044-9195
2007 (English)In: Neurocomputing, ISSN 0925-2312, E-ISSN 1872-8286, Vol. 70, no 10-12, 1843-1847 p.Article in journal (Refereed) Published
Abstract [en]

Existing models of EEG have mainly focused on relations to network dynamics characterized by firing rates [L. de Arcangelis, H.J. Herrmann, C. Perrone-Capano, Activity-dependent brain model explaining EEG spectra, arXiv:q-bio.NC/0411043 v1, 23 Nov 2004; D.T. Liley, D.M. Alexander, J.J. Wright, M.D. Aldous, Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons, Network 10(1) (1999) 79-92; O. David, J.K. Friston, A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage 20 (2003) 1743-1755]. Generally, these models assume that there exists a linear mapping between network firing rates and EEG states. However, firing rate is only one of several descriptors for network activity states. Other relevant descriptors are synchrony and irregularity of firing patterns [N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci. 8(3) (2000) 183-208]. To develop a better understanding of the EEG we need to relate these state descriptors to EEG states. Here, we try to go beyond the firing rate based approaches described in [D.T. Liley, D.M. Alexander, J.J. Wright, M.D. Aldous, Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons, Network 10(1) (1999) 79-92; O. David, J.K. Friston, A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage 20 (2003) 1743-1755] and relate synchronicity and irregularity in the network to EEG states. We show that the transformation between network activity and EEG can be approximately mediated by linear kernel with the shape of an α- or γ-function, allowing us a comparison between EEG states and network activity space. We find that the simulated EEG generated from asynchronous irregular type network activity is closely related to the human EEG recorded in the awake state, evaluated using power spectral density characteristics.

Place, publisher, year, edition, pages
2007. Vol. 70, no 10-12, 1843-1847 p.
Keyword [en]
LFP Model, Asynchronous irregular activity, Brain state, Cortical dynamics, EEG model, Human EEG, Parallel computing, Power spectral density, Simulated EEG
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:kth:diva-154852DOI: 10.1016/j.neucom.2006.10.115ISI: 000247215300048Scopus ID: 2-s2.0-34247515487OAI: oai:DiVA.org:kth-154852DiVA: diva2:758928
Note

QC 20150331

Available from: 2014-10-28 Created: 2014-10-28 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Kumar, Arvind

Search in DiVA

By author/editor
Kumar, Arvind
In the same journal
Neurocomputing
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf