CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt154",{id:"formSmash:upper:j_idt154",widgetVar:"widget_formSmash_upper_j_idt154",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt155_j_idt157",{id:"formSmash:upper:j_idt155:j_idt157",widgetVar:"widget_formSmash_upper_j_idt155_j_idt157",target:"formSmash:upper:j_idt155:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Simplicial complexes of graphsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2008 (English)In: Lecture Notes in Mathematics: Volume 1928, Springer Berlin/Heidelberg, 2008, p. 1-394Chapter in book (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer Berlin/Heidelberg, 2008. p. 1-394
##### Series

Lecture Notes in Mathematics, ISSN 0075-8434
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-154882ISI: 000251352800001Scopus ID: 2-s2.0-37149012563ISBN: 9783540758587 (print)OAI: oai:DiVA.org:kth-154882DiVA, id: diva2:759097
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt474",{id:"formSmash:j_idt474",widgetVar:"widget_formSmash_j_idt474",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt481",{id:"formSmash:j_idt481",widgetVar:"widget_formSmash_j_idt481",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt488",{id:"formSmash:j_idt488",widgetVar:"widget_formSmash_j_idt488",multiple:true});
##### Note

Let G be a finite graph with vertex set V and edge set E. A graph complex on G is an abstract simplicial complex consisting of subsets of E. In particular, we may interpret such a complex as a family of subgraphs of G. The subject of this book is the topology of graph complexes, the emphasis being placed on homology, homotopy type, connectivity degree, Cohen-Macaulayness, and Euler characteristic. We are particularly interested in the case that G is the complete graph on V. Monotone graph properties are complexes on such a graph satisfying the additional condition that they are invariant under permutations of V. Some well-studied monotone graph properties that we discuss in this book are complexes of matchings, forests, bipartite graphs, disconnected graphs, and not 2-connected graphs. We present new results about several other monotone graph properties, including complexes of not 3-connected graphs and graphs not coverable by p vertices. Imagining the vertices as the corners of a regular polygon, we obtain another important class consisting of those graph complexes that are invariant under the natural action of the dihedral group on this polygon. The most famous example is the associahedron, whose faces are graphs without crossings inside the polygon. Restricting to matchings, forests, or bipartite graphs, we obtain other interesting complexes of noncrossing graphs. We also examine a certain "dihedral" variant of connectivity. The third class to be examined is the class of digraph complexes. Some well-studied examples are complexes of acyclic digraphs and not strongly connected digraphs. We present new results about a few other digraph complexes, including complexes of graded digraphs and non-spanning digraphs. Many of our proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this book provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees, which we successfully apply to a large number of graph and digraph complexes.

QC 20141029

Available from: 2014-10-29 Created: 2014-10-28 Last updated: 2017-03-24Bibliographically approved
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1324",{id:"formSmash:j_idt1324",widgetVar:"widget_formSmash_j_idt1324",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1377",{id:"formSmash:lower:j_idt1377",widgetVar:"widget_formSmash_lower_j_idt1377",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1378_j_idt1380",{id:"formSmash:lower:j_idt1378:j_idt1380",widgetVar:"widget_formSmash_lower_j_idt1378_j_idt1380",target:"formSmash:lower:j_idt1378:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});