Change search
ReferencesLink to record
Permanent link

Direct link
Light-matter interaction of strong laser pulses in the micro-, nano-, and picosecond regimes
Show others and affiliations
2007 (English)In: Hybrid functional materials for optical applications, Materials Research Society, 2007, 12-29 p.Conference paper (Refereed)
Abstract [en]

Light propagation in a medium is sensitively dependent on the shape and intensity of the optical pulse as well as on the electronic and vibrational structure of the basic molecular units. We review in this paper results of systematic studies of this problem for isotropic media. Our theoretical approach-the quantum mechanical-electrodynamical (QMED) approach-is based on a quantum mechanical account of the many-level electron-nuclear medium coupled to a numerical solution of the density matrix and Maxwell s equations. This allows to accommodate a variety of nonlinear effects which accomplish the propagation of strong light pulses. Particular attention is paid to the understanding of the role of coherent and sequential excitations of electron-nuclear degrees of freedom. The QMED combination of quantum chemistry with classical pulse propagation allows to estimate the optical transmission from cross sections of multi-photon absorption processes and from considerations of propagation effects, saturation and pulse effects. Results of the theory suggest that in the nonlinear regime it is often necessary to account simultaneously for coherent one-step and incoherent step-wise multi-photon absorption, as well as for off-resonant excitations even when resonance conditions prevail. The dynamic theory of nonlinear propagation of a few interacting intense light pulses is here highlighted in a study of the optical power limiting with platinum-organic molecular compounds.

Place, publisher, year, edition, pages
Materials Research Society, 2007. 12-29 p.
, Materials Research Society Symposium Proceedings, ISSN 0272-9172 ; 1015
Keyword [en]
Absorption, Functional materials, Hybrid materials, Laser pulses, Light propagation, Light pulse generators, Maxwell equations, Multiphoton processes, Photons, Platinum, Pulsed laser applications, Quantum theory, Scanning, Sulfur compounds
National Category
Other Materials Engineering
URN: urn:nbn:se:kth:diva-154952ScopusID: 2-s2.0-70349876837ISBN: 978-160560420-6OAI: diva2:760021
Hybrid Functional Materials for Optical Applications - 2007 MRS Spring Meeting, 9 April 2007 through 13 April 2007, San Francisco, CA, United States

QC 20141103

Available from: 2014-11-03 Created: 2014-10-29 Last updated: 2014-11-03Bibliographically approved

Open Access in DiVA

No full text


Search in DiVA

By author/editor
Ågren, Hans
By organisation
Theoretical Chemistry (closed 20110512)
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 32 hits
ReferencesLink to record
Permanent link

Direct link