Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dye-Sensitized Nanostructured ZnO Electrodes for Solar Cell Applications
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630). KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630). KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630). KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
2006 (English)In: Nanostructured Materials for Solar Energy Conversion, Elsevier, 2006, 227-254 p.Chapter in book (Other academic)
Abstract [en]

This chapter describes dye-sensitized nanostructured ZnO electrodes for solar cell applications. Dye-sensitized nanostructured solar cells (DNSCs) based on nanostructured metal oxide films have attracted much attention in recent years. This chapter explains the schematic representation of the DNSC. The performance of dye-sensitized ZnO solar cells in terms of solar-to-electrical energy conversion efficiencies is so far significantly lower than that of TiO2, reaching currently about 4-5%. An analysis of the energetics and kinetics of ZnO-based DNSCs suggests that this is mainly because of the lesser degree of optimization in case of ZnO compared to TiO2-based DNSCs. A large potential exists to improve on the performance of dye-sensitized ZnO solar cells by learning how to use new types of anchoring groups and controlling the chemistry at the oxide/dye/electrolyte interface. This, in combination with the possibilities to tailor-make ZnO materials, manifests the opportunities for future research and development of these devices.

Place, publisher, year, edition, pages
Elsevier, 2006. 227-254 p.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-155109DOI: 10.1016/B978-044452844-5/50009-3ISI: 000311032400010Scopus ID: 2-s2.0-84883943842ISBN: 9780444528445 (print)OAI: oai:DiVA.org:kth-155109DiVA: diva2:760181
Note

QC 20141103

Available from: 2014-11-03 Created: 2014-10-30 Last updated: 2014-11-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Boschloo, Gerrit K.Edvinsson, TomasHagfeldt, Anders
By organisation
Physical Chemistry (closed 20110630)Centre of Molecular Devices, CMD
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf