Change search
ReferencesLink to record
Permanent link

Direct link
Dynamic analysis of soil-steel composite railway bridges: FE-modeling in Plaxis
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

A soil-steel composite bridge is a structure comprised of corrugated steel plates, which are joined with bolted connections, enclosed in friction soil material on both sides and on the top. The surrounding friction soil material, or backfill, is applied in sequential steps, each step involving compaction of the soil, which is a necessity for the construction to accumulate the required bearing capacity. Soil-steel composite bridges are an attractive option as compared with other more customary bridge types, owing to the lower construction time and building cost involved. This is particularly true in cases where gaps in the form of minor watercourses, roads or railways must be bridged.

The objective of this master thesis is the modelling of an existing soil-steel composite railway bridge in Märsta, Sweden with the finite element software Plaxis. A 3D model is created and calibrated for crown deflection against measurement data collected by the Division of Structural Engineering and Bridges of the Royal Institute of Technology (KTH) in Stockholm, Sweden.

Once the 3D model is calibrated for deflection, two 2D models with different properties are created in much the same way. In model 1, the full axle load is used and the soil stiffness varied, and in model 2 the soil stiffness acquired in the 3D model is used and the external load varied. The results are compared to measurement data. In 2D model 1 an efficient width of 1,46 m for the soil stiffness is used in combination with the full axle load, and in 2D model 2 an efficient width of 2,85 m is used for the external load, in combination with the soil stiffness acquired in the 3D model.

Aside from this, parametric studies are performed in order to analyse the effect of certain input parameters upon output results, and in order to analyse influence line lengths.

Recreating the accelerations and stresses in the existing bridge using finite element models is complicated, and the results reflect this. Below are shown the discrepancies between model results and measurement data for the pipe crown. The scatter in the measurement data has not been taken into consideration for this; these specific numbers are valid only for one particular train passage.

For crown deflection, the 3D model shows a discrepancy of 4%, 2D model 1 5% and 2D model 2 8% compared with measurement data. For crown acceleration, in the same order, the discrepancy with measurements is 1%, 71% and 21% for maximum acceleration, and 46%, 35% and 28% for minimum acceleration. For maximum crown tensile stress, the discrepancy is 95%, 263% and 13%. For maximum crown compressive stress, the discrepancy is 70%, 16% and 46%.

Place, publisher, year, edition, pages
2014. , 117 p.
TRITA-BKN-Examensarbete, ISSN 1103-4297 ; 436
Keyword [en]
Soil-steel composite bridge; Corrugated steel culvert; High-speed railways; FEM; Plaxis; Field measurements
National Category
Infrastructure Engineering
URN: urn:nbn:se:kth:diva-155515OAI: diva2:761372
Subject / course
Structural Design and Bridges
Educational program
School of Architecture and the Built Environment (ABE) - Master of Science in Engineering
2014-06-05, Projekthallen, Brinellvägen 23, Stockholm, 13:00 (English)
Available from: 2014-11-06 Created: 2014-11-06 Last updated: 2014-11-06Bibliographically approved

Open Access in DiVA

fulltext(11313 kB)999 downloads
File information
File name FULLTEXT01.pdfFile size 11313 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Aagah, OrodAryannejad, Siavash
By organisation
Structural Engineering and Bridges
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 999 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 2107 hits
ReferencesLink to record
Permanent link

Direct link