Change search
ReferencesLink to record
Permanent link

Direct link
Analysis of the Semi local States in ZnO-InN Compounds
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Multiscale Materials Modelling.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Multiscale Materials Modelling. Department of Physics, University of Oslo, Norway .ORCID iD: 0000-0002-9050-5445
2014 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 14, no 10, 4937-4943 p.Article in journal (Refereed) Published
Abstract [en]

ZnO alloys are extensively explored for the developments of optoelectronics. In this work we analyze the rather unconventional type of ZnO-based compound ZnOX (ZnO)(1y)Xy with X = InN. The compound forms alloy with ZnO and/or assembles cluster structures in the ZnO host. Importantly, this type of alloy benefits from being isovalent which implies a more stable crystalline structure, and at the same time it benefits from the oxynitride anion-alloying that alters the optoelectronic properties. Theoretical studies reveal that incorporating InN in ZnO strongly narrows the fundamental band gap energy Eg. For example, the (ZnO)(0.875)(InN)(0.125) alloy has the gap energy E-g = 2.20 eV = E-g(ZnO) 1.14 eV. The origin of this effect is a hybridization of the anion N 2p-like and O 2p-like orbitals. Intriguingly, the presence of InN nanoclusters enhances this effect and narrows the gap further, and moreover, the nanostructured configurations show more disperse energy distribution of the hybridized anion states compared with the random alloy. Nanoclustering affects the ZnO host more compared to structures with more random distribution of the InN dimers. On the basis of the different characters of the alloys and the nanostructures, we conclude that fine-tuned synthesizing of the (ZnO)(1-y)(InN)(y) alloys can be beneficial for a variety of novel nanosystems for optoelectronic and photoelectrochemical applications.

Place, publisher, year, edition, pages
2014. Vol. 14, no 10, 4937-4943 p.
National Category
Other Chemistry Topics Materials Chemistry
URN: urn:nbn:se:kth:diva-155467DOI: 10.1021/cg500279qISI: 000342609300012ScopusID: 2-s2.0-84907494769OAI: diva2:762615
Swedish Research Council

QC 20141112

Available from: 2014-11-12 Created: 2014-11-06 Last updated: 2015-04-23Bibliographically approved
In thesis
1. First principles study of oxide semiconductors for solar energy applications
Open this publication in new window or tab >>First principles study of oxide semiconductors for solar energy applications
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The objectives of this thesis are to understand the electronic structures of oxides and oxynitrides for photocatalytic water splitting, examine the Casimir interaction between oxides, and explore possible approach to bridge the Casimir force and material properties for advanced material research. The studies were performed in the framework of the density functional theory, many-body perturbation theory, i.e, the GW approximation and Bethe-Salpeter equation, as well as the Casimir-Lifshitz approach.

The thesis consists of two sets of results. In the first part (papers I-VI), the electronic structures of oxynitrides, i.e., ZnO-GaN and ZnO-InN, with different compositions and local structures have been studied. The oxynitrides reduce the band-gap energies significantly compared to the binary counterparts, enabling the oxynitrides to act as visible light active photocatalysts. Formation of cluster--like structures further reduces the band-gap and delocalizes the valence bands, benefiting higher optical absorption. Furthermore, the energy levels between oxynitride and water were aligned using a surface model adapted from semiconductor heterostructure.

In the second part (papers V-IX), the electronic structures of oxides as well as the Casimir interactions have been examined. In particular, we investigated the differences of optical and electronic properties between SnO2 and TiO2 polymorphs in terms of band-edge characters and electron-phonon coupling. In addition, we synthesized a mesoporous material possessing two types of pore structures (one is hexagonal ordered with pore diameter of 2.60 nm and the other is disordered with pore diameter of 3.85 nm). The pore framework contains four-coordinated titanium and oxygen vacancies, verified by both experimental measurements and density-functional theory calculations. Utilizing the predicted properties of the materials, we studied the Casimir interactions. A stable equilibrium of Casimir force is achieved in planar geometry containing a thin film and porous substrates. Both the force and equilibrium distance are tuned through modification of the material properties, for instance, optical properties and porosity. Furthermore, we adapted this concept to study the interactions between gas bubbles and porous SiO2 in water. A transition from repulsion to attraction is predicted, which highlights that the bubbles may interact differently at different surface regions.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. viii, 96 p.
photocatalysis; water splitting; oxynitrides; dielectric function; first-principles calculation; density functional theory; electronic structures; Casimir interaction
National Category
Materials Engineering
Research subject
Materials Science and Engineering
urn:nbn:se:kth:diva-165070 (URN)978-91-7595-451-6 (ISBN)
Public defence
2015-05-22, D3, Lindstedtsvägen 5, KTH, Stockholm, 13:00 (English)

QC 20150423

Available from: 2015-04-23 Created: 2015-04-22 Last updated: 2015-04-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Doe, MaofengPersson, Clas
By organisation
Multiscale Materials Modelling
In the same journal
Crystal Growth & Design
Other Chemistry TopicsMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 38 hits
ReferencesLink to record
Permanent link

Direct link