CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt171",{id:"formSmash:upper:j_idt171",widgetVar:"widget_formSmash_upper_j_idt171",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt173_j_idt175",{id:"formSmash:upper:j_idt173:j_idt175",widgetVar:"widget_formSmash_upper_j_idt173_j_idt175",target:"formSmash:upper:j_idt173:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfacesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt260",{id:"formSmash:j_idt260",widgetVar:"widget_formSmash_j_idt260",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Applied Mathematics Research eXpress, ISSN 1687-1200, E-ISSN 1687-1197, no 2, 329-417 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Oxford University Press, 2015. no 2, 329-417 p.
##### Keyword [en]

HIGH-ORDER CORRECTIONS, NUMERICAL-ANALYSIS, QUANTUM, PROPAGATION, ERGODICITY, OPERATORS, APPROXIMATION, SYSTEMS
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-156031DOI: 10.1093/amrx/abv007ISI: 000366820400007Scopus ID: 2-s2.0-84941214775OAI: oai:DiVA.org:kth-156031DiVA: diva2:764166
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt481",{id:"formSmash:j_idt481",widgetVar:"widget_formSmash_j_idt481",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt487",{id:"formSmash:j_idt487",widgetVar:"widget_formSmash_j_idt487",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt493",{id:"formSmash:j_idt493",widgetVar:"widget_formSmash_j_idt493",multiple:true});
##### Note

##### In thesis

The difference of the values of observables for the time-independent Schrödinger equation, with matrix-valued potentials, and the values of observables for ab initio Born-Oppenheimer molecular dynamics, of the ground state, depends on the probability to be in excited states, and the electron/nuclei mass ratio. The paper first proves an error estimate (depending on the electron/nuclei mass ratio and the probability to be in excited states) for this difference of microcanonical observables, assuming that molecular dynamics space-time averages converge, with a rate related to the maximal Lyapunov exponent. The error estimate is uniform in the number of particles and the analysis does not assume a uniform lower bound on the spectral gap of the electron operator and consequently the probability to be in excited states can be large. A numerical method to determine the probability to be in excited states is then presented, based on Ehrenfest molecular dynamics, and stability analysis of a perturbed eigenvalue problem.

Updated from Manuscript to Article. QC 20151012. QC 20160121

Available from: 2014-11-18 Created: 2014-11-18 Last updated: 2017-12-05Bibliographically approved1. Error Estimation and Adaptive Methods for Molecular Dynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay764200",{id:"formSmash:j_idt787:0:j_idt792",widgetVar:"overlay764200",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Numerical Methods for Molecular Dynamics with Nearly Crossing Potential Surfaces$(function(){PrimeFaces.cw("OverlayPanel","overlay1044055",{id:"formSmash:j_idt787:1:j_idt792",widgetVar:"overlay1044055",target:"formSmash:j_idt787:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1285",{id:"formSmash:j_idt1285",widgetVar:"widget_formSmash_j_idt1285",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1352",{id:"formSmash:lower:j_idt1352",widgetVar:"widget_formSmash_lower_j_idt1352",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1353_j_idt1355",{id:"formSmash:lower:j_idt1353:j_idt1355",widgetVar:"widget_formSmash_lower_j_idt1353_j_idt1355",target:"formSmash:lower:j_idt1353:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});