Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
POLAR: Portable, optical see-through, low-cost augmented reality
KTH, School of Computer Science and Communication (CSC), High Performance Computing and Visualization (HPCViz).ORCID iD: 0000-0003-2578-3403
2006 (English)In: Proc. ACM Symp. Virtual Reality Softw. Technol. VRST, 2006, 227-230 p.Conference paper, Published paper (Refereed)
Abstract [en]

We describe POLAR, a portable, optical see-through, low-cost augmented reality system, which allows a user to see annotated views of small to medium-sized physical objects in an unencumbered way. No display or tracking equipment needs to be worn. We describe the system design, including a hybrid IR/vision head-tracking solution, and present examples of simple augmented scenes. POLAR's compactness could allow it to be used as a lightweight and portable PC peripheral for providing mobile users with on-demand AR access in field work.

Place, publisher, year, edition, pages
2006. 227-230 p.
Series
Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, 2006
Keyword [en]
Augmented reality, Compact, Low-cost, Optical see-through, Portable, Projection, Personal computers, Systems analysis, Tracking (position), Low cost, Virtual reality
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:kth:diva-155995Scopus ID: 2-s2.0-33748699854ISBN: 1595930981 (print)ISBN: 9781595930989 (print)OAI: oai:DiVA.org:kth-155995DiVA: diva2:765807
Conference
VRST'05 - ACM Symposium on Virtual Reality Software and Technology 2005, 7-9 November 2005, Monterey, CA, USA
Note

QC 20141125

Available from: 2014-11-25 Created: 2014-11-17 Last updated: 2015-01-30Bibliographically approved
In thesis
1. Unobtrusive Augmentation  of Physical Environments: Interaction Techniques, Spatial Displays and Ubiquitous Sensing
Open this publication in new window or tab >>Unobtrusive Augmentation  of Physical Environments: Interaction Techniques, Spatial Displays and Ubiquitous Sensing
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The fundamental idea of Augmented Reality (AR) is to improve and enhance our perception of the surroundings, through the use of sensing, computing and display systems that make it possible to augment the physical environment with virtual computer graphics. AR is, however, often associated with user-worn equipment, whose current complexity and lack of comfort limit its applicability in many scenarios.

The goal of this work has been to develop systems and techniques for uncomplicated AR experiences that support sporadic and spontaneous interaction with minimal preparation on the user’s part.

This dissertation defines a new concept, Unobtrusive AR, which emphasizes an optically direct view of a visually unaltered physical environment, the avoidance of user-worn technology, and the preference for unencumbering techniques.

The first part of the work focuses on the design and development of two new AR display systems. They illustrate how AR experiences can be achieved through transparent see-through displays that are positioned in front of the physical environment to be augmented. The second part presents two novel sensing techniques for AR, which employ an instrumented surface for unobtrusive tracking of active and passive objects. These techniques have no visible sensing technology or markers, and are suitable for deployment in scenarios where it is important to maintain the visual qualities of the real environment. The third part of the work discusses a set of new interaction techniques for spatially aware handheld displays, public 3D displays, touch screens, and immaterial displays (which are not constrained by solid surfaces or enclosures). Many of the techniques are also applicable to human-computer interaction in general, as indicated by the accompanying qualitative and quantitative insights from user evaluations.

The thesis contributes a set of novel display systems, sensing technologies, and interaction techniques to the field of human-computer interaction, and brings new perspectives to the enhancement of real environments through computer graphics.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. xii, 72 p.
Series
TRITA-CSC-A, ISSN 1653-5723 ; 2009:09
National Category
Computer Science
Identifiers
urn:nbn:se:kth:diva-10439 (URN)978-91-7415-339-2 (ISBN)
Public defence
2009-06-05, E1, Lindstedtsvägen 3, KTH, 13:00 (English)
Opponent
Supervisors
Note

QC 20100805

Available from: 2009-05-26 Created: 2009-05-14 Last updated: 2015-01-30Bibliographically approved

Open Access in DiVA

No full text

Scopus

Authority records BETA

Olwal, Alex

Search in DiVA

By author/editor
Olwal, Alex
By organisation
High Performance Computing and Visualization (HPCViz)
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf