Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure and mechanism of Zn2+-transporting P-type ATPases
Show others and affiliations
2014 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 514, no 7523, 518-+ p.Article in journal (Refereed) Published
Abstract [en]

Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis(1). In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements(2,3). Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.P-i) of ZntA from Shigella sonnei, determined at 3.2 angstrom and 2.7 angstrom resolution, respectively. The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.P-i state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn2+ release as a built-in counter ion, as has been proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between P-IB-type Zn2+-ATPases and P-III-type H+-ATPases and at the same time show structural features of the extracellular release pathway that resemble P-II-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase(4,5) (SERCA) and Na+, K+-ATPase(6). These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.

Place, publisher, year, edition, pages
2014. Vol. 514, no 7523, 518-+ p.
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-156441DOI: 10.1038/nature13618ISI: 000343775900046OAI: oai:DiVA.org:kth-156441DiVA: diva2:767986
Note

QC 20141202

Available from: 2014-12-02 Created: 2014-11-28 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Andersson, Magnus

Search in DiVA

By author/editor
Andersson, Magnus
By organisation
Theoretical & Computational BiophysicsScience for Life Laboratory, SciLifeLab
In the same journal
Nature
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf