Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal piano fingering for simple melodies
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2014 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This study proposes an ergonomic model-based algorithm to automatically decide an optimal piano fingering for a given simple melody that can be played by the right hand. The ergonomic model is represented by 13 rules based on physical constrains related to piano playing which can score the difficulty of a fingering. Optimal fingering thus is generated by finding the fingering with minimum difficulty in the tree of possible fingerings. The proposed algorithm was tested through generating optimal fingerings for three pieces and making a comparison between the generated fingerings and the fingerings provided by two experienced pianists. The result indicated that the automatically generated fingerings were close enough to the proposed fingerings from the pianists.

Abstract [sv]

Denna studie undersöker möjligheten att generera fingersättningar för enstämmiga pianostycken med hjälp av en algoritm baserad på ergonomiska regler. De 13 regler algoritmen utnyttjar representerar fysiologiska begränsningar av sträckningar och förflyttningar av högerhanden vilka poängsätts utifrån det intervall som spelas. Algoritmen testades på tre pianostycken och resultaten jämfördes med fingersättningar från två erfarna pianister. Jämförelsen visade att algoritmen lyckades med att generera fingersättningar som var rimligt lika vad en erfaren pianist hade valt att spela.

Place, publisher, year, edition, pages
2014.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-156893OAI: oai:DiVA.org:kth-156893DiVA: diva2:768564
Examiners
Available from: 2014-12-04 Created: 2014-12-04 Last updated: 2014-12-04Bibliographically approved

Open Access in DiVA

fulltext(456 kB)431 downloads
File information
File name FULLTEXT01.pdfFile size 456 kBChecksum SHA-512
6ff1b78d5d1088f7593dd39d504a42936fe6146be8eaa8a66d5ee5f0f1e268183a193a4168753f4d57306ac84a59b9b7364e41b3fd33d724a2007e266076fcba
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 431 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 193 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf