Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Speech Recognitionon the Android Platformunder Adverse Noise Conditions
KTH, School of Computer Science and Communication (CSC).
2014 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This study investigates the offline transcription capabilities of the Android Speech RecognitionEngine (ASRE). The need for this study comes from an original specification for an application tobe used to prevent illegal logging in the Amazon rainforest. Recognition of a set of spoken wordsand phrases was tested under controlled conditions in a recording studio using varying levels ofbackground noise. The results indicate that the ASRE can properly transcribe digits, parts of digits,and strings, but that cannot properly transcribe continuous text. The study finds that the ASREcould meet the needs of the original project specification and can be used to help prevent illegallogging in the Amazon rainforest.

Abstract [sv]

Denna studie undersöker möjligheten till röstigenkänning i offlineläge hos Androidsröstigenkänningsmotor (ASRE). Studien behövs som en del i ett projekt för att producera enapplikation för att förhindra illegal avverkning i Amazonområdet. Tester av ASREs förmåga gjordesmed ord och fraser under kontrollerade förhållanden i en inspelningsstudio med varierade nivåer avbakgrundsljud. Resultaten visar att ASRE kan transkribera siffror, delar av siffror, och strängar, menatt den inte kan transkribera flytande text. Slutsatsen är att ASRE kan användas för att att uppfyllaoriginalspecifikationen och producera en applikation för att hjälpa till att förhindra illegalavverkning i Amazonområdet.Page 2

Place, publisher, year, edition, pages
2014.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-157140OAI: oai:DiVA.org:kth-157140DiVA: diva2:769349
Examiners
Available from: 2014-12-08 Created: 2014-12-08 Last updated: 2014-12-08Bibliographically approved

Open Access in DiVA

fulltext(2753 kB)91 downloads
File information
File name FULLTEXT01.pdfFile size 2753 kBChecksum SHA-512
65370edfbc6d34a94393c335a2300b6dadd7e1fdc582e8911cf969a92417bcccc471a9e5522df67ef5f09d3f6503577e54c7ccde59c445255bb46cbece830ce9
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 91 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf