Change search
ReferencesLink to record
Permanent link

Direct link
Feasibility study of absorption chillers with a low temperature heat source
KTH, Superseded Departments, Chemical Engineering and Technology.ORCID iD: 0000-0001-9556-552X
2004 (English)In: American Society of Mechanical Engineers, Advanced Energy Systems Division, 2004, 461-468 p.Conference paper (Refereed)
Abstract [en]

Low temperature energy powering an absorption chiller will make more energy sources available for comfort cooling as compared to conventional heat driven chillers. Solar energy, industrial waste heat and heat from combined power and heat generation are examples of sources for driving energy. Also, the distribution of energy for comfort cooling could be made efficiently by transportation of hot water to the chiller situated near to the customers. Absorption chillers driven by temperatures lower than 90°C (194°F) are in general not available as an "off-the-shelf product." Usually the low temperature driven chillers are custom made to fit to the local conditions with respect to temperatures of the driving energy and of the cooling water. The optimal design of a chiller is dependant on the temperature of the driving energy as well as on the temperature of the available heat sink for cooling the absorber and the condenser. A scheme for optimization of the chiller with respect to the size of the heat transfer surfaces and of the temperature drop of the driving energy and of the cooling water is presented herein. Presented results illustrate the dramatic effect on the size of the absorber by changing the cooling water temperature, and the equally dramatic effect on the size of the condenser and generator by changing the temperature of the driving energy. Clearly, lowering the heat source temperature and/or increasing the heat sink temperature increases the capital cost for a chiller. However, when coupled to combined heat and power generation, reasonable pay-back times have here been demonstrated for low temperature driven absorption chillers due to the increased electricity production in the overall system.

Place, publisher, year, edition, pages
2004. 461-468 p.
, American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, ISSN 1071-6947 ; 44
Keyword [en]
Carbon dioxide, Condensers (liquefiers), Cooling, Electric equipment, Electric power generation, Electricity, Heat sinks, Low temperature effects, Optimization, Solar energy, Absorption chillers, Feasibility, Indoor environment, Low temperature hear source, Power cycle, Cooling systems
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-157466DOI: 10.1115/IMECE2004-60781ScopusID: 2-s2.0-19544369124OAI: diva2:770030
2004 ASME International Mechanical Engineering Congress and Exposition, IMECE, 13 November 2004 through 19 November 2004, Anaheim, CA

QC 20141209

Available from: 2014-12-09 Created: 2014-12-09 Last updated: 2014-12-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Martin, Viktoria
By organisation
Chemical Engineering and Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link