Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the scattering theory of the Laplacian with a periodic boundary condition. II. Additional channels of scattering
KTH, Superseded Departments, Mathematics.
2004 (English)In: Documenta Mathematica, ISSN 1431-0635, E-ISSN 1431-0643, Vol. 9, no 1, 57-77 p.Article in journal (Refereed) Published
Abstract [en]

We study spectral and scattering properties of the Laplacian H (σ) = -Δ in L2(ℝ+2) corresponding to the boundary condition ∂u/∂ν + σu = 0 for a wide class of periodic functions σ. For non-negative σ we prove that H(σ) is unitarily equivalent to the Neumann Laplacian H(0). In general, there appear additional channels of scattering which are analyzed in detail.

Place, publisher, year, edition, pages
2004. Vol. 9, no 1, 57-77 p.
Keyword [en]
Periodic operator, Scattering theory, Schrödinger operator, Singular potential
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-157264Scopus ID: 2-s2.0-18644381473OAI: oai:DiVA.org:kth-157264DiVA: diva2:771300
Note

QC 20141212

Available from: 2014-12-12 Created: 2014-12-08 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Frank, Rupert L.
By organisation
Mathematics
In the same journal
Documenta Mathematica
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf