Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the cohomology of local systems on the moduli spaces of curves of genus 2 and of Abelian surfaces, I
KTH, Superseded Departments, Mathematics.ORCID iD: 0000-0003-2598-4870
2004 (English)In: Comptes Rendus Mathematique, ISSN 1631-073X, Vol. 338, no 5, 381-384 p.Article in journal (Refereed) Published
Abstract [en]

We consider the cohomology of local systems on the moduli space of curves of genus 2 and the moduli space of Abelian surfaces. We give an explicit formula for the Eisenstein cohomology and a conjectural formula for the endoscopic contribution. We show how counting curves over finite fields provides us with detailed information about Siegel modular forms.

Place, publisher, year, edition, pages
2004. Vol. 338, no 5, 381-384 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-157771DOI: 10.1016/j.crma.2003.12.026ISI: 000222842100007Scopus ID: 2-s2.0-1342264770OAI: oai:DiVA.org:kth-157771DiVA: diva2:771764
Note

QC 20141215

Available from: 2014-12-15 Created: 2014-12-15 Last updated: 2014-12-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Faber, Carel

Search in DiVA

By author/editor
Faber, Carel
By organisation
Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf