Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance
KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
Show others and affiliations
2014 (English)In: Metabolic engineering, ISSN 1096-7176, E-ISSN 1096-7184, Vol. 26, 57-66 p.Article in journal (Refereed) Published
Abstract [en]

Biologically produced 3-hydroxypropionic acid (3HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial scale production there is a need for robust cell factories tolerant to high concentration of 3HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hyclroxymerhyl)glutathione dehydrogenase. Based on our findings, we propose that 3HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin ) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells. (C) 2014 International Metabolic Engineering Society Published by Elsevier Inc. On behalf of International Metabolic Engineering Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/)

Place, publisher, year, edition, pages
2014. Vol. 26, 57-66 p.
Keyword [en]
3-hydroxypropionic acid, Tolerance, 3-hydroxypropionic aldehyde (reuterin), Saccharomyces cerevisiae, Adaptive laboratory evolution
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-158836DOI: 10.1016/j.ymben.2014.09.004ISI: 000344998300006Scopus ID: 2-s2.0-84907862283OAI: oai:DiVA.org:kth-158836DiVA: diva2:783444
Funder
Novo Nordisk
Note

QC 20150126

Available from: 2015-01-26 Created: 2015-01-12 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hallström, Björn M.
By organisation
Proteomics and NanobiotechnologyScience for Life Laboratory, SciLifeLab
In the same journal
Metabolic engineering
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf