Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling the Propagation of Aortic Dissection
KTH, School of Technology and Health (STH).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Aortic dissection is a diseased condition of the aorta in which there is an initial tear to the intimal layer propagating in the radial direction initially then causing delamination of the arterial layers creating a false lumen. It is estimated to effect 30 individuals in one million per year. The dissection is fatal when it ruptures, and 90 % of the patients die within three months if not diagnosed.

This study presents the first steps towards modeling the propagation of aortic dissection. The aorta was treated as a three-layered fiber-reinforced composite structure, and the Tsai-Wu failure criterion was employed to obtain the 3-D failure surface for the healthy and dissected human aortic media. To be able to obtain Tsai-Wu coefficients, uniaxial tensile tests in the axial, circumferential, and radial direction, and additionally in-plane (axial-circumferential plane) and out-of-plane shear tests in different orientations were performed on human aortic medias. To our knowledge the combination of applied tests and performingof out-of-plane shear tests on aortic tissues is novel.

The results showed that the aortic media was the weakest in radial direction under tensile loading. Furthermore, the media was much stronger under out-of-plane shear loading than under in-plane shear loading. In order to consider influences of stress coupling between axial and circumferential directions, an optimal specimen geometry was designed for biaxial tensile testing by the help of finite element analyses. A cruciform geometry with a reduced cross-section in the biaxially loaded zone was found to fit our purposes the best. The preparation protocol to achieve this geometry is currently under investigation. For aortic tissues, all compressive strengths and some biaxial tensile strengths needed to be assumed since they are yet not possible to obtain from mechanical tests. Finally, failure surfaces described by the Tsai-Wu criterion were plotted in 2-D using the analyzed experimental data, with different assumptions in compressive and biaxial tensile strengths.

Place, publisher, year, edition, pages
2015. , 115 p.
Series
TRITA-STH, 2015: 003
National Category
Medical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-159600OAI: oai:DiVA.org:kth-159600DiVA: diva2:786276
External cooperation
Institute of Biomechanics, TU Graz
Subject / course
Medical Engineering
Educational program
Master of Science - Medical Engineering
Presentation
2015-01-23, 10:28 (English)
Supervisors
Examiners
Available from: 2015-02-26 Created: 2015-02-05 Last updated: 2015-02-26Bibliographically approved

Open Access in DiVA

Selda_Sherifova_Student_Thesis(13192 kB)221 downloads
File information
File name FULLTEXT01.pdfFile size 13192 kBChecksum SHA-512
0878adda921df61b0ededcd2bd4968d560a5b5fe6bdc27c1a202fd88fc56d727daec2ee723895f3989acbcf42560d985155618c232c462b5d6ba427b03a9e9cd
Type fulltextMimetype application/pdf

By organisation
School of Technology and Health (STH)
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 221 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 351 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf