CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Applications of Fourier Analysis in Homogenization of the Dirichlet Problem: L-p EstimatesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Archive for Rational Mechanics and Analysis, ISSN 0003-9527, E-ISSN 1432-0673, Vol. 215, no 1, 65-87 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2015. Vol. 215, no 1, 65-87 p.
##### Keyword [en]

Elliptic-Systems, Green
##### National Category

Other Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-159614DOI: 10.1007/s00205-014-0774-5ISI: 000347403500002OAI: oai:DiVA.org:kth-159614DiVA: diva2:787099
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Funder

Swedish Research Council
##### Note

Let u(epsilon) be a solution to the system div(A(epsilon)(x)del u(epsilon)(x)) = 0 in D, u(epsilon)(x) = g(x, x/epsilon) on partial derivative D, where D subset of R-d (d >= 2), is a smooth uniformly convex domain, and g is 1-periodic in its second variable, and both A(epsilon) and g are sufficiently smooth. Our results in this paper are twofold. First we prove L-p convergence results for solutions of the above system and for the non-oscillating operator A(epsilon)(x) = A(x), with the following convergence rate for all 1 <= p < infinity parallel to u(epsilon) - u(0)parallel to (LP(D)) <= C-P {epsilon(1/2p), d = 2, (epsilon vertical bar ln epsilon vertical bar)(1/p), d = 3, epsilon(1/p), d >= 4, which we prove is (generically) sharp for d >= 4. Here u(0) is the solution to the averaging problem. Second, combining our method with the recent results due to Kenig, Lin and Shen (Commun Pure Appl Math 67(8): 1219-1262, 2014), we prove (for certain class of operators and when d >= 3) ||u(epsilon) - u(0)||(Lp(D)) <= C-p[epsilon(ln(1/epsilon))(2)](1/p) for both the oscillating operator and boundary data. For this case, we take A(epsilon) = A(x/epsilon), where A is 1-periodic as well. Some further applications of the method to the homogenization of the Neumann problem with oscillating boundary data are also considered.

QC 20150209

Available from: 2015-02-09 Created: 2015-02-05 Last updated: 2017-06-20Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});