Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Release of quercetin from micellar nanoparticles with saturated and unsaturated core forming polyesters - A combined computational and experimental study
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology. Chemistry Department, School of Science, University of Tehran, Iran .
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-7790-8987
2015 (English)In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 46, 417-426 p.Article in journal (Refereed) Published
Abstract [en]

Computational and experimental studies were combined to obtain new insight into the widely reported anomalous release mechanism of hydrophobic drug (quercetin) from polymeric micellar nanopartides. Saturated and unsaturated amphiphilic triblock copolymers from monomethoxy polyethylene glycol (mPEG), poly(butylene adipate) (PBA) and poly(cis-2-butene adipate) (PCBA) (mPEG-PBA-mPEG and mPEG-PCBA-mPEG) were utilized as model polymers to specify the contribution of polymer-micelle degradation and polymer-drug interactions on the observed differences in the release rates by applicable computational investigation and experimental evaluations. Monitoring the size of the micelles through the releasing process together with hydrolytic degradation studies of the core forming polymers proved that the contribution of polymer hydrolysis and micelle degradation on the observed differences in the release rates during the release time window was minimal. The compatibility between quercetin and the core forming polymer is another factor influencing the drug encapsulation and the relative release rate and it was therefore investigated theoretically (using density functional theory (DFT) at B3LYP/6-311(++)G level of theory) and experimentally (FT-IR imaging). The drug-polymer interactions in the core were shown to be much more important than the polymer and/or micelle swelling-dissociation-degradation processes under the studied conditions.

Place, publisher, year, edition, pages
2015. Vol. 46, 417-426 p.
Keyword [en]
Micellar nanoparticles, Unsaturated polyesters, Drug-polymer interactions, Density functional theory, Hydrogen bonding
National Category
Textile, Rubber and Polymeric Materials
Identifiers
URN: urn:nbn:se:kth:diva-160403DOI: 10.1016/j.msec.2014.10.059ISI: 000347757100054Scopus ID: 2-s2.0-84908403070OAI: oai:DiVA.org:kth-160403DiVA: diva2:790402
Note

QC 20150224

Available from: 2015-02-24 Created: 2015-02-19 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Hakkarainen, Minna

Search in DiVA

By author/editor
Hassanzadeh, SalmanHakkarainen, Minna
By organisation
Polymer Technology
In the same journal
Materials science & engineering. C, biomimetic materials, sensors and systems
Textile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf