Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CO2 fluxes and ecosystem dynamics at five European treeless peatlands - merging data and process oriented modeling
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. Technische Universität München, Chai. of Restoration EcologyFreising, Germany .ORCID iD: 0000-0003-1306-9333
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
Show others and affiliations
2015 (English)In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 12, no 1, 125-146 p.Article in journal (Refereed) Published
Abstract [en]

The carbon dioxide (CO2) exchange of five different peatland systems across Europe with a wide gradient in land use intensity, water table depth, soil fertility and climate was simulated with the process oriented CoupModel. The aim of the study was to find out whether CO2 fluxes, measured at different sites, can be explained by common processes and parameters or to what extend a site specific configuration is needed. The model was calibrated to fit measured CO2 fluxes, soil temperature, snow depth and leaf area index (LAI) and resulting differences in model parameters were analyzed. Finding site independent model parameters would mean that differences in the measured fluxes could be explained solely by model input data: water table, meteorological data, management and soil inventory data. Seasonal variability in the major fluxes was well captured, when a site independent configuration was utilized for most of the parameters. Parameters that differed between sites included the rate of soil organic decomposition, photosynthetic efficiency, and regulation of the mobile carbon (C) pool from senescence to shooting in the next year. The largest difference between sites was the rate coefficient for heterotrophic respiration. Setting it to a common value would lead to underestimation of mean total respiration by a factor of 2.8 up to an overestimation by a factor of 4. Despite testing a wide range of different responses to soil water and temperature, rate coefficients for heterotrophic respiration were consistently the lowest on formerly drained sites and the highest on the managed sites. Substrate decomposability, pH and vegetation characteristics are possible explanations for the differences in decomposition rates. Specific parameter values for the timing of plant shooting and senescence, the photosynthesis response to temperature, litter fall and plant respiration rates, leaf morphology and allocation fractions of new assimilates, were not needed, even though the gradient in site latitude ranged from 48 degrees N (southern Germany) to 68 degrees N (northern Finland) differed largely in their vegetation. This was also true for common parameters defining the moisture and temperature response for decomposition, leading to the conclusion that a site specific interpretation of these processes is not necessary. In contrast, the rate of soil organic decomposition, photosynthetic efficiency, and the regulation of the mobile carbon pool need to be estimated from available information on specific soil conditions, vegetation and management of the ecosystems, to be able to describe CO2 fluxes under different conditions.

Place, publisher, year, edition, pages
2015. Vol. 12, no 1, 125-146 p.
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:kth:diva-160399DOI: 10.5194/bg-12-125-2015ISI: 000347960800008Scopus ID: 2-s2.0-84920717447OAI: oai:DiVA.org:kth-160399DiVA: diva2:790619
Note

QC 20150225

Available from: 2015-02-25 Created: 2015-02-19 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Metzger, Christine

Search in DiVA

By author/editor
Metzger, ChristineJansson, Per-Erik
By organisation
Land and Water Resources Engineering
In the same journal
Biogeosciences
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf