Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of tip shroud cavity detailing on turbine blade forcing calculations
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-9195-793X
Show others and affiliations
2014 (English)In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, ASME Press, 2014, Vol. 7B, p. V07BT35A021-Conference paper, Published paper (Refereed)
Abstract [en]

Forced response in turbomachinery refers to the vibration of a component due to an excitation originating from another component. Obstacles, such as struts and blade rows in the upstream and downstream flow path of a turbomachine engine lead to engine order (EO) excitations. To be able to predict the severity of these excitations, both aerodynamic and structural calculations are performed. There is a risk of critical high cycle fatigue (HCF) failure when the force acts at a resonance frequency. Customarily, forcing calculations exclude detailing features, such as leakage flows. The current investigation uses a two stage subsonic model steam turbine configuration with shrouded rotor blades to demonstrate the influence of neglecting flow through seal cavities for blade forcing predictions. Upstream and downstream vanes are the excitation sources on the rotor blade. Calculation results are compared for a configuration including and excluding the tip shroud cavity. Computed data is compared to available pressure data from tests in the model turbine. The investigation shows for the first blade passing excitation at design point that the axial and circumferential rotor forcing change by +22%, respectively +4% when including the tip shroud cavity for the investigated configuration. The change in forcing arises from the interaction of the leakage flow with the main stream flow. For highly loaded designs this can be of importance if there is a critical excitation.

Place, publisher, year, edition, pages
ASME Press, 2014. Vol. 7B, p. V07BT35A021-
Keywords [en]
Engines, Excited states, Fatigue of materials, Leakage (fluid), Steam turbines, Stream flow, Turbomachine blades, Calculation results, Critical excitation, Downstream flow, Excitation sources, Forced response, High cycle fatigue, Resonance frequencies, Structural calculations
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-160680DOI: 10.1115/GT2014-26724ISI: 000362240200079Scopus ID: 2-s2.0-84922237083ISBN: 9780791845776 (print)OAI: oai:DiVA.org:kth-160680DiVA, id: diva2:790989
Conference
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014, Dusseldorf, Germany, 16 June 2014 through 20 June 2014
Funder
Swedish Energy Agency
Note

QC 20150226

Available from: 2015-02-26 Created: 2015-02-26 Last updated: 2019-01-14Bibliographically approved
In thesis
1. The Influence of Flow Leakage Modelling on Turbomachinery Blade Forcing Predictions
Open this publication in new window or tab >>The Influence of Flow Leakage Modelling on Turbomachinery Blade Forcing Predictions
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Vibrations in turbomachinery engine components are undesirable as they put the structural integrity of the components at risk and can lead to failure during the lifetime of the turbomachinery engine. Vibrations arising from aerodynamic forces and stability of turbomachinery blades is assessed in the discipline of aeromechanics. Ultimately, aeromechanical considerations limit turbomachinery designs and impose constraints on innovative aerodynamic designs with highly loaded light-weight components. Besides, aeromechanical assessment of blade vibration is done at a late stage of the design process and the number of iterations in the design loop is limited. Aeromechanical calculations can have large uncertainties in the prediction accuracy, especially when made a-priori without test data or without comparable design experience to tune the analysis methods. Therefore, large safety margins are required in the design, given that only a small set of prototype engines of a chosen design can be manufactured for testing. This may result in unnecessarily conservative engines and inhibit efficient or cost-effective design.

Accurate prediction methods together with a reliable estimate of the accuracy and sensitivity of the calculations will allow designers to push the limits and to design machines with highly efficient components. Efficiency directly translates into savings in terms of operational cost, capital cost as well as reductions in emissions when fuels are used.

In the presented work the sensitivity of aerodynamic forcing to the geometry features of a tip gap, hub cavity, tip-shroud cavity and inlet guide vane partial gaps has been investigated by the means of URANS CFD computations. The results indicate that sensitivity is both feature and case dependent, and that the detailing features can significantly alter the aerodynamic forcing function. The work shows, that the features should be included in high-fidelity aerodynamic models used for aeromechanics and highlights the mechanisms in which the features affect the aeromechanic forcing.

Investigations were performed for a subsonic model steam turbine configuration in 1.5 stage simulations, for a transonic turbine stage and for a 1.5 stage transonic research compressor in a 5 row investigation. Computations were performed using time domain simulations on scaled sectors of the blade rows. Results are analysed in terms of generalised modal force, and differences in the flow-field between the investigated detailing configurations are highlighted, marking the influence of the detailing features.

Abstract [sv]

Vibrationer i turbomaskinmotorer är oönskade därför att de riskerar komponenternasstrukturella integritet och kan leda till brott under motorns livslängd.Vibrationer som har sitt ursprung i aerodynamiska krafter, såväl somaerodynamiskt kopplad stabilitet av blad i turbomaskinen studeras inom aeromekanik. I slutändan verkar aeromekaniska överväganden inskränkande i utvecklingav turbomaskiner och utgör begränsningar till innovativa aerodynamiskakonstruktioner med högbelastade lättviktkomponenter. För övrigt görsen aeromekanisk bedömning av bladvibration på en sen fas av konstruktionsprocessenoch antalet iterationer i designslingan är begränsad. Aeromekaniskaberäkningar kan komma med stor osäkerhet angående exakthet av prognoser,speciellt när de görs i förväg utan testdata eller utan jämförbar erfarenhetsom kan hjälpa till att avstämma analysmetoderna, och bara ett begränsatantal testmotorer kan tillverkas för provning.

Därför krävs stora säkerhetsmarginaler i konstruktionen. Detta kan ledatill onödigt konservativa konstruktioner och hindra effektiv eller kostnadseffektivdesign.

Noggranna prediktiva metoder tillsammans med en bra uppskattning avexaktheten och känsligheten av beräkningarna gör det möjligt för konstruktöreratt driva gränserna och konstruera maskiner med högeffektiva komponenter. Effektivitet omvandlas dessutom direkt till besparingar när det gällerdriftskostnad, kapitalkostnad och utsläppsminskningar ifall bränsle användsför att driva motorn.

I det här arbetet har aerodynamikens inflytande av att modellera geometriskadetaljeringar studerats. Rotorspetsmellanrum, navkavitet, spetskavitetoch mellanrum på styrskovlar undersöktes med hjälp av URANS CFDberäkningar.Resultaten visar att påverkan är både detaljberoende och fallberoende,och att detaljeringsfunktionerna kan väsentligt ändra den aerodynamiskainstationära kraften som utför arbete på strukturen. Denna avhandlingvisar att undersökning av geometrisk detaljer bör ingå i noggranna aerodynamiskamodeller som används för aeromekanik och markerar på vilket visdetaljer påverkar den aeromekaniska kraften.

Simuleringsundersökningar utfördes på en subsonisk ångprovturbinkonfigurationi 1,5-steg, ett transoniskt turbinsteg, och på en 1,5-steg transoniskforskningskompressor med 5 skovelrad. Beräkningar utfördes i tidsdomän påskalade sektorer av bladraderna. Resultaten analyserades med fokus på generaliseradmodalkraft. Förändringar i flödesfältet mellan de undersökta detaljeringskonfigurationernamarkeras i samband med aerodynamisk skillnad ibladkraft.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 109
Series
TRITA-ITM-AVL ; 2018:58
National Category
Engineering and Technology
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-241125 (URN)978-91-7873-060-5 (ISBN)
Public defence
2019-02-06, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish National Space Board, T7328Swedish Energy Agency, T6527
Available from: 2019-01-14 Created: 2019-01-11 Last updated: 2019-05-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Gezork, Tobias

Search in DiVA

By author/editor
Gezork, TobiasFransson, Torsten
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 142 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf