Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fabrication of relaxed germanium on insulator via room temperature wafer bonding
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.ORCID iD: 0000-0003-0654-0262
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
Show others and affiliations
2014 (English)In: ECS Transactions: Volume 64, Cancun, Mexico, October 5 – 9, 2014 2014 ECS and SMEQ Joint International Meeting, Electrochemical Society, 2014, no 6, 533-541 p.Conference paper, Published paper (Refereed)
Abstract [en]

We report on the fabrication of, high quality, monocrystalline relaxed Germanium with ultra-low roughness on insulator (GeOI) using low-temperature direct wafer bonding. We observe that a two-step epitaxially grown germanium film fabricated on silicon by reduced pressure chemical vapor deposition can be directly bonded to a SiO2 layer using a thin Al2O3 as bonding mediator. After removing the donor substrate silicon the germanium layer exhibits a complete relaxation without degradation in crystalline quality and no stress in the film. . The results suggest that the fabricated high quality GeOI substrate is a suitable platform for high performance device applications.

Place, publisher, year, edition, pages
Electrochemical Society, 2014. no 6, 533-541 p.
Series
ECS Transactions, ISSN 1938-5862 ; 64
Keyword [en]
Bonding, Chemical bonds, Chemical vapor deposition, Fabrication, Germanium, Silicon, Silicon alloys, Silicon oxides, Silicon wafers, Temperature, Crystalline quality, Direct wafer bonding, Epitaxially grown, Germanium on insulators, High performance devices, Low temperatures, Reduced pressure chemical vapor deposition, Room temperature
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-160681DOI: 10.1149/06406.0533ecstScopus ID: 2-s2.0-84921260797OAI: oai:DiVA.org:kth-160681DiVA: diva2:790993
Conference
6th SiGe, Ge, and Related Compounds: Materials, Processing and Devices Symposium - 2014 ECS and SMEQ Joint International Meeting, Cancun, Mexico, 5 October 2014 through 9 October 2014
Note

QC 20150226

Available from: 2015-02-26 Created: 2015-02-26 Last updated: 2015-02-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Roupillard, GabrielHellström, Per-Erik

Search in DiVA

By author/editor
Asadollahi, AliZabel, ThomasRoupillard, GabrielRadamson, Henry H.Hellström, Per-ErikÖstling, Mikael
By organisation
Integrated Devices and Circuits
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf