Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metal-insulator-metal plasmonic absorbers: influence of lattice
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.ORCID iD: 0000-0002-0111-9009
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.ORCID iD: 0000-0002-3368-9786
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Zhejiang University, China .
2014 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 22, no 25, 30807-30814 p.Article in journal (Refereed) Published
Abstract [en]

We experimentally demonstrate three kinds of metal-insulator-metal based plasmonic absorbers consisting of arrays of gold nanodisks distributed in different lattices, including square, triangular and honeycomb lattices. It's found that resonances originated from localized surface plasmon undergo little changes with respect to different lattice distributions of the nanodisks. The interparticle coupling results in a minor bandwidth broadening of the fundamental mode. Different from square-and triangular-lattice absorbers, honeycomb-lattice absorber possesses a unique red-shifting (with respect to incident angles) narrow-band high-order mode, which originates from coupling of incident light to propagating surface plasmon polariton (SPP) waves. Similar high-order mode can also be generated in square-lattice absorber by increasing the period so that a smaller reciprocal lattice vector can be introduced to excite the SPP mode. Furthermore, we show that two types of resonances can interact and create Fano-type resonances. The simulation results agree well with the experimental results. (C) 2014 Optical Society of America

Place, publisher, year, edition, pages
2014. Vol. 22, no 25, 30807-30814 p.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-160069DOI: 10.1364/OE.22.030807ISI: 000346368800073Scopus ID: 2-s2.0-84919629941OAI: oai:DiVA.org:kth-160069DiVA: diva2:791126
Funder
Swedish Foundation for Strategic Research Swedish Research Council
Note

QC 20150225

Available from: 2015-02-26 Created: 2015-02-13 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Dai, JinYan, Min

Search in DiVA

By author/editor
Chen, YitingDai, JinYan, MinQiu, Min
By organisation
Optics and Photonics, OFO
In the same journal
Optics Express
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf