Change search
ReferencesLink to record
Permanent link

Direct link
Nitrogen-related changes in exciton localization and dynamics in GaInNAs/GaAs quantum wells grown by metalorganic vapor phase epitaxy
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.ORCID iD: 0000-0002-9040-4740
2015 (English)In: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 118, no 2, 479-486 p.Article in journal (Refereed) Published
Abstract [en]

In this work, we show the results of low-temperature photoluminescence (PL), time-resolved photoluminescence, and photoreflectance (PR) investigations, performed on a series of three Ga0.64In0.34As1-x N (x) /GaAs single quantum wells (SQW) grown by metalorganic vapor phase epitaxy with the nitrogen content of 0, 0.5, and 0.8 %. Comparing the PL and PR data, we show that at low excitation intensity and temperature, the radiative recombination occurs via localizing centers (LCs) in all samples. The excitation intensity-dependent PL measurements combined with theoretical modeling of hopping excitons in this system allow us to provide quantitative information on the disorder parameters describing population of LCs. It has been found that the average energy of LCs increases about two times and simultaneously the number of LCs increases about 10 and 20 times after the incorporation of 0.5 and 0.8 % of nitrogen, respectively. The value of average localization energy E > (0) determined for N-containing samples (similar to 6-7 meV) is in the range typical for dilute nitride QWs grown by molecular beam epitaxy (MBE). On the other hand, the "effective" concentration of LCs seems to be higher than for GaInNAs/GaAs QW grown by MBE. The dramatic increase in localizing centers also affects the PL dynamics. Observed PL decay time dispersion is much stronger in GaInNAs SQW than in nitrogen-free SQW. The change in PL dynamic is very well reproduced by model of hopping excitons.

Place, publisher, year, edition, pages
2015. Vol. 118, no 2, 479-486 p.
Keyword [en]
Epitaxial growth, Excitons, Gallium nitride, Metallorganic vapor phase epitaxy, Molecular beam epitaxy, Nitrogen, Photoluminescence, Temperature, Vapor phase epitaxy, Disorder parameters, Excitation intensity, Exciton localization, Low temperature photoluminescence, Quantitative information, Radiative recombination, Theoretical modeling, Time-resolved photoluminescence
National Category
Other Physics Topics
URN: urn:nbn:se:kth:diva-160739DOI: 10.1007/s00339-014-8794-4ISI: 000348300100014ScopusID: 2-s2.0-84921809641OAI: diva2:792088

QC 20150303

Available from: 2015-03-03 Created: 2015-02-27 Last updated: 2015-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hammar, Mattias
By organisation
Integrated Devices and Circuits
In the same journal
Applied Physics A: Materials Science & Processing
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link