Change search
ReferencesLink to record
Permanent link

Direct link
Grey-box Identification of Distributed Parameter Systems
KTH, School of Electrical Engineering (EES).
2005 (English)Doctoral thesis, monograph (Other scientific)
Abstract [en]

This thesis considers the problem of making dynamic models for industrial processes by combining physical modelling with experimental data. The focus is on distributed parameter systems, that is, systems for which the model structure involves partial differential equations (PDE). Distributed parameter systems are important in many applications, e.g., in chemical process systems and in intracellular biochemical processes, and involve for instance all forms of transport and transfer phenomena. For such systems, the postulated model structure usually requires a finite dimensional approximation to enable identification and validation using experimental data. The finite dimensional approximation involves translating the PDE model into a set of ordinary differential equations, and is termed model reduction.

The objective of the thesis is two-fold. First, general PDE model reduction methods which are efficient in terms of model order for a given level of accuracy are studied. The focus here is on a class of methods called moving mesh methods, in which the discretization mesh is considered a dynamic degree of freedom that can be used for reducing the model reduction error. These methods are potentially highly efficient for model reduction of PDEs, but often suffer from stability and robustness problems. In this thesis it is shown that moving mesh methods can be cast as standard feedback control problems. Existing moving mesh methods are analyzed based on tools and results available from control theory, and plausible explanations to the robustness problems and parametric sensitivity experienced with these methods are provided. Possible remedies to these problems are also proposed. A novel moving finite element method, Orthogonal Collocation on Moving Finite Elements (OCMFE), is proposed based on a simple estimate of the model reduction error combined with a low order linear feedback controller. The method is demonstrated to be robust, and hence puts only small demands on the user.

In the second part of the thesis, the integration of PDE model reduction methods with grey-box modelling tools available for finite dimensional models is considered. First, it is shown that the standard approach based on performing model reduction using some ad hoc discretization method and model order, prior to calibrating and validating the reduced model, has a number of potential pitfalls and can easily lead to falsely validated PDE models. To overcome these problems, a systematic approach based on separating model reduction errors from discrepancies between postulated model structures and measurement data is proposed. The proposed approach is successfully demonstrated on a challenging chromatography process, used for separation in biochemical production, for which it is shown that data collected at the boundaries of the process can be used to clearly distinguish between two model structures commonly used for this process.

Place, publisher, year, edition, pages
Stockholm: KTH , 2005. , xii, 305 p.
Trita-S3-REG., ISSN 1404-2150 ; 0503
Keyword [en]
Electrical engineering, grey-box modeling, grey-box identification, model reduction, PDE, chromatography, bifurcation, moving mesh methods, orthogonal collocation on moving finite elements, OCMFE
Keyword [sv]
Elektroteknik, elektronik och fotonik
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-220ISBN: 91-7178-064-5OAI: diva2:7936
Public defence
2005-06-03, K2, Teknikringen 28, KTH, Stockholm, 10:00
QC 20101020Available from: 2005-05-25 Created: 2005-05-25 Last updated: 2010-10-20Bibliographically approved

Open Access in DiVA

fulltext(3317 kB)950 downloads
File information
File name FULLTEXT01.pdfFile size 3317 kBChecksum SHA-1
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Liu, Yi
By organisation
School of Electrical Engineering (EES)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 950 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 699 hits
ReferencesLink to record
Permanent link

Direct link