Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the problem of using guard traces for high frequency differential lines crosstalk reduction
KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
Mid Sweden University, Sweden.
Mid Sweden University, Sweden.
2007 (English)In: IEEE transactions on components and packaging technologies (Print), ISSN 1521-3331, E-ISSN 1557-9972, Vol. 30, no 1, 67-74 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, the problem of using guard traces for reducing crosstalk between differential transmission line pairs is investigated, both experimentally and by full-wave electromagnetic (EM) simulations. Different cases of differential lines crosstalk are treated with and without guard trace separation between the differential line pairs. Coated microstrip printed circuit board test structures including thru-reflect-line calibration standards are designed and fabricated on a high frequency laminate material, allowing direct measurement of crosstalk between adjacent differential line pairs in the absence and in the presence of guard traces stitched with vias of regular spacing. The test structures are characterized with mixed-mode scattering parameters using a physical layer test system. Different configurations (of differential line pairs) without guard trace, with floating guard traces (which are terminated and nonterminated) and with a solid guard trace separation are investigated using a High Frequency Structure Simulator (a commercial full-wave 3-D EM simulation tool). The experimental data are compared with the simulation results, and some conclusions and guidelines on the effect of guard traces for alleviating crosstalk between differential transmission lines are presented.

Place, publisher, year, edition, pages
2007. Vol. 30, no 1, 67-74 p.
Keyword [en]
coated microstrip differential transmission lines, coupling, guard trace, high frequency crosstalk, signal integrity, S-parameters measurement, thru-reflect-line (TRL) calibration
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-5147DOI: 10.1109/TCAPT.2007.892072ISI: 000245418400009Scopus ID: 2-s2.0-34147122524OAI: oai:DiVA.org:kth-5147DiVA: diva2:7946
Note

Tidigare titel: Differential lines Crosstalk Reduction Using Guard Traces Uppdaterad från submitted till published: 20101006 QC 20101006

Available from: 2005-05-25 Created: 2005-05-25 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Alternative electronic packaging concepts for high frequency electronics
Open this publication in new window or tab >>Alternative electronic packaging concepts for high frequency electronics
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The aim of the research work presented here, is to contribute to the adaptation of electronic packaging towards the needs of high frequency applications. As the field of electronic packaging stretches over several very different professional areas, it takes an interdisciplinary approach to optimize the technology of electronic packaging. Besides this, an extensive knowledge of industrial engineering should be an essential part of this undertaking to improve electronic packaging. Customary advances in technology are driven by new findings and a continuous development of processes in clearly defined fields. However, in the field of the higher levels of the interconnection hierarchy, that is external to the chip level interconnections and chip packaging, it is supposed that a wide combination of disciplines and technical creativity, instead of advanced technology in a special area should produce most added value.

The thesis is divided into five areas, interlinked by the overall aim of there advantages to the common goal. These areas are the Printed Wiring Board (PWB) technology, PWB connections using flexible printed circuit boards, multiconductor cable connections, shielded enclosures and the related EMC issues, and finally the cooling of electronics. A central issue was to improve the shielded enclosures to be effective also at very high frequencies; it will be shown that shielded enclosures without apertures can cope with frequencies up to and above 15 GHz. Due to this enclosure without apertures, it was necessary to develop a novel cooling structure. This cooling structure consists of a heat sink where the PCB’s are inserted in close contact to the cooling fins on one side, whereas the other side of the heat sink is cooled by forced ventilation. The heat transfer between these parts is completely inside the same body. Tests carried out on a prototype have shown that the performance of the cooling structure is satisfactory for electronic cooling.

Another problem area that is addressed are the interconnect problems in high frequency applications. Interconnections between parts of a local electronic system, or as within the telecom and datacom field between subscribers, are commonly accomplished by cable connections. In this research work multiconductor cables are examined and a patented novel cable-connector for high frequency use is presented. Further, an experimental complex soldering method between flexible printed circuits boards and rigid printed circuits boards, as part of connections between PCBs, is shown. Finally, different sectors of the PCB technology for high frequency applications are scrutinized and measurements on microstrip structures are presented.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. viii, 73 p.
Series
Trita-EKT, ISSN 1650-8599 ; 2005:3
Keyword
Electrical engineering, Connector, cooling, electronic, elastomer interconnect, EMC, shielded enclosure, high frequency, PCB, PWB, reverberation chamber, seams, soldering, twisted pair cable, Elektroteknik
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-223 (URN)
Public defence
2005-06-01, sal C1, KTH-Electrum, 13:15
Opponent
Supervisors
Note
QC 20101006Available from: 2005-05-25 Created: 2005-05-25 Last updated: 2010-10-06Bibliographically approved
2. Some Aspects of Advanced Technologies and Signal Integrity Issues in High Frequency PCBs, with Emphasis on Planar Transmission Lines and RF/Microwave Filters
Open this publication in new window or tab >>Some Aspects of Advanced Technologies and Signal Integrity Issues in High Frequency PCBs, with Emphasis on Planar Transmission Lines and RF/Microwave Filters
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The main focus of this thesis is placed on high frequency PCB signal Integrity Is-sues and RF/Microwave filters using EBG structures.

From the signal Integrity aspect, two topics were mainly discussed. On one hand, the effect of increasing frequency on classical design rules for crosstalk reduction in PCBs was investigated experimentally and by full-wave simulations. An emphasis was placed on the 3×W spacing rule and the use of guard traces. Single-ended and differential transmission lines were considered. S-parameter measurements and simu-lations were carried out at high-frequency (up to 20 GHz). The results emphasize the necessity to reevaluate traditional design rules for their suitability in high frequency applications. Also, the impacts of using guard traces for high frequency crosstalk re-duction were clearly pointed out. On the other hand, the effect of high loss PCB ma-terials on the signal transmission characteristics of microstrip lines at high frequency (up to 20 GHz) was treated. Comparative studies were carried out on different micro-strip configurations using standard FR4 substrate and a high frequency dielectric ma-terial from Rogers, Corporation. The experimental results highlight the dramatic im-pact of high dielectric loss materials (FR4 and solder mask) and magnetic plating metal (nickel) on the high frequency signal attenuation and loss of microstrip trans-mission lines.

Besides, the epoxy-based SU8 photoresist was characterized at high frequency (up to 50 GHz) using on-wafer conductor-backed coplanar waveguide transmission lines. A relative dielectric constant of 3.2 was obtained at 30 GHz. Some issues related to the processing of this material, such as cracks, hard-skin, etc, were also discussed.

Regarding RF/Microwave filters, the concept of Electromagnetic Band Gap (EBG) was used to design and fabricate novel microstrip bandstop filters using periodically modified substrate. The proposed EBG structures, which don’t suffer conductor backing issues, exhibit interesting frequency response characteristics.

The limitations of modeling and simulation tools in terms of speed and accuracy are also examined in this thesis. Experiments and simulations were carried out show-ing the inadequacies of the Spice diode model for the simulations in power electronics. Also, an Artificial Neural Network (ANN) model was proposed as an alternative and a complement to full-wave solvers, for a quick and sufficiently accurate simulation of interconnects. A software implementation of this model using Matlab’s ANN toolbox was shown to considerably reduce (by over 800 times) the simulation time of microstrip lines using full-wave solvers such as Ansoft’s HFSS and CST’s MWS.

Finally, a novel cooling structure using a double heatsink for high performance electronics was presented. Methods for optimizing this structure were also discussed.

Place, publisher, year, edition, pages
Stockholm: KTH, 2007. xvii, 77 p.
Series
Trita-ICT/MAP, 2007:03
Keyword
Signal integrity, crosstalk, guard trace, PCB, transmission line loss, high frequency measurement, dielectric, SU-8, electromagnetic bandgap, microwave filter
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-4324 (URN)978-91-7178-605-0 (ISBN)
Public defence
2007-04-17, Rum 5435, KTH-Electrum, Isafjordsg. 22, Kista, 10:00
Opponent
Supervisors
Note
QC 20100809Available from: 2007-04-10 Created: 2007-04-10 Last updated: 2011-09-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Mbairi, FelixSiebert, PeterHesselbom, Hjalmar
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
IEEE transactions on components and packaging technologies (Print)
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 180 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf