Change search
ReferencesLink to record
Permanent link

Direct link
Performance evaluation of contaminant removal and air quality control for local ventilation systems using the ventilation index Net Escape Velocity
KTH Research School University of Gävle, Sweden.
2014 (English)In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 79, 78-89 p.Article in journal (Refereed) Published
Abstract [en]

A concept of ventilation efficiency, Net Escape Velocity (NEV), developed by authors presents the net and integrated velocity of contaminant transport by convection and diffusion effect at a point within the room. The NEV is the effective ventilation rate with a velocity scale determining the contaminant concentration at a target point and can be expressed by vector and scalar quantities. It is the most important characteristic of NEV concept. An expanded concept of NEV (NEV*), under an assumption that the inflow flux of a contaminant on the control volume is a contaminant generation, was proposed. We believe that the NEV and NEV* distributions can provide helpful information for ventilation design to control contaminants.The purpose of this study was to demonstrate the advantage and contribution of NEV* to current ventilation design procedure by using numerical analysis. Here, it was evaluated by the NEV* that the contaminant removal performances of local ventilation systems which are a kitchen exhaust hood in a kitchen environment, a push-pull hood in an industrial environment and an adsorptive building material in a test chamber. The distributions of the NEV* as vector quantities under the different flow and diffusion fields were analyzed to investigate contaminant leakage across the hypothetical boundaries of the control target domain of the local ventilation hood and to investigate the contaminant concentration reduction performance of the adsorptive building materials.

Place, publisher, year, edition, pages
2014. Vol. 79, 78-89 p.
Keyword [en]
Adsorptive building material, Effective velocity of contaminant transport, Local ventilation system, Net Escape Velocity, Performance evaluation, Ventilation effectiveness
National Category
Construction Management
URN: urn:nbn:se:kth:diva-161526DOI: 10.1016/j.buildenv.2014.04.020ISI: 000339696500008ScopusID: 2-s2.0-84901316899OAI: diva2:794685

QC 20150312

Available from: 2015-03-12 Created: 2015-03-12 Last updated: 2015-03-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sandberg, Mats
In the same journal
Building and Environment
Construction Management

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 35 hits
ReferencesLink to record
Permanent link

Direct link