Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The combination of a new organic D-pi-A dye with different organic hole-transport materials for efficient solid-state dye-sensitized solar cells
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.ORCID iD: 0000-0001-5069-3245
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
Show others and affiliations
2015 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 8, 4420-4427 p.Article in journal (Refereed) Published
Abstract [en]

A new organic donor-pi-acceptor sensitizer MKA253 has been applied for highly efficient solid-state dye-sensitized solar cells (ssDSSCs). Using 2,2',7,7'-tetrakis(N,N-di-pi-methoxyphenyl-amine) 9,9'-spirobifluorene (Spiro-OMeTAD) as the hole transport material (HTM), an excellent power conversion efficiency of 6.1% was recorded together with a high short-circuit current of 12.4 mA cm(-2) under standard AM 1.5G illumination (100 mW cm(-2)). Different combinations of dyes and HTMs have also been investigated in the ssDSSC device. The results showed that small molecule HTM based devices suffer from comparably high electron recombination losses, thus causing low open-circuit voltage. In addition, photo-induced absorption (PIA) spectroscopy showed that the small-molecule HTMs lead to more efficient dye regeneration in comparison with Spiro-OMeTAD, despite a lower thermodynamic driving force. The results of this study also show that optimized energy levels for the dye-HTMs could be a vital factor for highly efficient ssDSSCs.

Place, publisher, year, edition, pages
RSC Publishing, 2015. Vol. 3, no 8, 4420-4427 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-161984DOI: 10.1039/c4ta05774kISI: 000349667700038Scopus ID: 2-s2.0-84922843906OAI: oai:DiVA.org:kth-161984DiVA: diva2:800541
Note

QC 20150407

Available from: 2015-04-07 Created: 2015-03-20 Last updated: 2017-07-14Bibliographically approved
In thesis
1. Novel organic sensitizers and hole transport materials for efficient solid-state photovoltaic devices
Open this publication in new window or tab >>Novel organic sensitizers and hole transport materials for efficient solid-state photovoltaic devices
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

State-of-art solid-state photovoltaic devices, such as solid-state dye sensitized solar cells (ssDSSCs) and perovskite solar cells have attracted significant attention due to their high efficiency and potential low-cost manufacture. However, there are still challenges that limit the application up-scaling..

 

One important factor that limits the efficiency of ssDSSCs is associated with the sensitizers. In this thesis, we have developed several organic sensitizers for highly efficient and stable ssDSSCs. The compatibility between sensitizers and hole transport materials has also been investigated. Novel blue colored sensitizers have been studied with aesthetic applications in mind. By co-sensitization using two complementary sensitizing dyes, the efficiency of ssDSSCs can be increased significantly..

 

For both PSCs and ssDSSCs, the hole transport materials (HTMs) represent one of the crucial factors for efficient charge collection as well as future cost of manufacturing. Here, we have studied organic triphenylamine based oligomers as HTMs for both ssDSSCs and PSCs. The influence of the molecular structure of the HTM building blocks on the photovoltaic performance has been studied in detail. In order to minimizing the cost of fabrication of photovoltaic devices, we have also developed sulfur-based cross-linked polymers as HTMs to replace the well-known, expensive HTM Spiro-OMeTAD. The cross-linked polymeric sulfur material work well in both ssDSSCs and PSCs with efficiencies around 2% and 10%, respectively. These results will provides important insights for the future design of inexpensive and efficient solid state photovoltaic devices.

Abstract [sv]

Nya solceller på forskningsstadiet, såsom fasta färgämnessensiterade solceller (ssDSSC) och perovskitsolceller (PSC), har tilldragit sig stor uppmärksamhet pga hög effektivitet och potentiellt låg tillverkningskostnad. Dessa typer av solceller konfronteras dock med utmaningar vilka förhindrar uppskalning.

 

En viktig begränsande faktor för omvandlingseffektiviteten från ssDDSC kan hänföras till de sensiterande färgämnena. I den här avhandlingen har vi utvecklat flera nya organiska färgämnen för effektiva och stabila ssDSSC. Kompatibiliteten mellan dessa färgämnen och hål-ledande material har också undersökts. Nya blå färgämnen har studerats med särskild avsikt att skapa förutsättningar för estetiskt tilltalande solceller. Genom samtidig sensitering med två olika och kompletterande färgämnen har solceller med högra effektivitet kunnat tillverkas.

 

Hål-transportmaterial (HTM) till både ssDSSC och PSC utgör en viktig parameter för effektiv omvandling liksom en framtida tillverkningskostnad. In detta arbete har vi undersökt organiska, trifenylaminbaserade HTM till både ssDSSC och PSC. Effekter från den molekylära strukturen i de hål-ledande materialens byggstenar  har studerats i detalj. Med sikte på en framtida låg tillverkningskostnad av solceller av dessa typer, så har också korslänkade svavelbaserade HTM tagits fram för att ersätta det välkända och dyra materialet Spiro-OMeTAD. Dessa korslänkade och polymera svavelmaterial ger ssDSSC och PSC med höga omvandlingseffektiviteter, 2% respektive 10%. Resultaten i denna avhandling ger viktiga insikter för utveckling av framtida billiga och samtidigt effektiva fasta solceller.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 71 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2017:4
Keyword
organic sensitizers, ssDSCs, perovskite solar cell, hole transport materials, cross-linked polymeric sulfur
National Category
Physical Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-211089 (URN)978-91-7729-454-2 (ISBN)
Public defence
2017-09-12, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20170714

Available from: 2017-07-14 Created: 2017-07-14 Last updated: 2017-07-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Liu, PengSun, Licheng

Search in DiVA

By author/editor
Liu, PengXu, BoSun, LichengKloo, Lars
By organisation
Applied Material PhysicsOrganic ChemistryCentre of Molecular Devices, CMDApplied Physical Chemistry
In the same journal
Journal of Materials Chemistry A
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 406 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf