Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Thick-Walled Fluid-Solid-Growth Model of Abdominal Aortic Aneurysm Evolution: Application to a Patient-Specific Geometry
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).ORCID iD: 0000-0002-2749-3381
Graz Univ Technol, Austria.
2015 (English)In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 137, no 3, 031008Article in journal (Refereed) Published
Abstract [en]

We propose a novel thick-walled fluid-solid-growth (FSG) computational framework for modeling vascular disease evolution. The arterial wall is modeled as a thick-walled nonlinearly elastic cylindrical tube consisting of two layers corresponding to the mediaintima and adventitia, where each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component. Blood is modeled as a Newtonian fluid with constant density and viscosity; no slip and no-flux conditions are applied at the arterial wall. Disease progression is simulated by growth and remodeling (G&R) of the load bearing constituents of the wall. Adaptions of the natural reference configurations and mass densities of constituents are driven by deviations of mechanical stimuli from homeostatic levels. We apply the novel framework to model abdominal aortic aneurysm (AAA) evolution. Elastin degradation is initially prescribed to create a perturbation to the geometry which results in a local decrease in wall shear stress (WSS). Subsequent degradation of elastin is driven by low WSS and an aneurysm evolves as the elastin degrades and the collagen adapts. The influence of transmural G&R of constituents on the aneurysm development is analyzed. We observe that elastin and collagen strains evolve to be transmurally heterogeneous and this may facilitate the development of tortuosity. This multiphysics framework provides the basis for exploring the influence of transmural metabolic activity on the progression of vascular disease.

Place, publisher, year, edition, pages
2015. Vol. 137, no 3, 031008
Keyword [en]
aneurysm, three-dimensional, elastin degradation, growth, remodeling, fluid-solid-growth model
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-163462DOI: 10.1115/1.4029279ISI: 000350572600009OAI: oai:DiVA.org:kth-163462DiVA: diva2:800903
Funder
Wellcome trust, WT 088877/Z/09/Z
Note

QC 20150408

Available from: 2015-04-08 Created: 2015-04-07 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Abdominal aortic aneurysm inception and evolution - A computational model
Open this publication in new window or tab >>Abdominal aortic aneurysm inception and evolution - A computational model
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Abdominal aortic aneurysm (AAA) is characterized by a bulge in the abdominal aorta. AAA development is mostly asymptomatic, but such a bulge may suddenly rupture, which is associated with a high mortality rate. Unfortunately, there is no medication that can prevent AAA from expanding or rupturing. Therefore, patients with detected AAA are monitored until treatment indication, such as maximum AAA diameter of 55 mm or expansion rate of 1 cm/year. Models of AAA development may help to understand the disease progression and to inform decision-making on a patient-specific basis. AAA growth and remodeling (G&R) models are rather complex, and before the challenge is undertaken, sound clinical validation is required.

In Paper A, an existing thick-walled model of growth and remodeling of one layer of an AAA slice has been extended to a two-layered model, which better reflects the layered structure of the vessel wall. A parameter study was performed to investigate the influence of mechanical properties and G&R parameters of such a model on the aneurysm growth.

In Paper B, the model from Paper A was extended to an organ level model of AAA growth. Furthermore, the model was incorporated into a Fluid-Solid-Growth (FSG) framework. A patient-specific geometry of the abdominal aorta is used to illustrate the model capabilities.

In Paper C, the evolution of the patient-specific biomechanical characteristics of the AAA was investigated. Four patients with five to eight Computed Tomography-Angiography (CT-A) scans at different time points were analyzed. Several non-trivial statistical correlations were found between the analyzed parameters.

In Paper D, the effect of different growth kinematics on AAA growth was investigated. The transverse isotropic in-thickness growth was the most suitable AAA growth assumption, while fully isotropic growth and transverse isotropic in-plane growth produced unrealistic results. In addition, modeling of the tissue volume change improved the wall thickness prediction, but still overestimated thinning of the wall during aneurysm expansion.

Abstract [sv]

Bukaortaaneurysm (AAA) kännetecknas av en utbuktning hos aortaväggen i buken. Tillväxt av en AAA är oftast asymtomatisk, men en sådan utbuktning kan plö̈tsligt brista, vilket har hög dödlighet. Tyvärr finns det inga mediciner som kan förhindra AAA från att expandera eller brista. Patienter med upptä̈ckt AAA hålls därför under uppsikt tills operationskrav är uppnådda, såsom maximal AAA-diameter på 55 mm eller expansionstakt på 1 cm/år. Modeller för AAA-tillväxt kan bidra till att öka förståelsen för sjukdomsförloppet och till att förbättra beslutsunderlaget på en patientspecifik basis. AAA modeller för tillväxt och strukturförändring (G&R) är ganska komplicerade och innan man tar sig an denna utmaning krävs de god klinisk validering.

I Artikel A har en befintlig tjockväggig modell för tillväxt av ett skikt av en AAA-skiva utö̈kats till en två-skiktsmodell. Denna modell återspeglar bättre den skiktade strukturen hos kärlväggen. Genom en parameterstudie undersö̈ktes påverkan av mekaniska egenskaper och G&R-parametrar hos en sådan modell för AAA-tillväxt.

I Artikel B utvidgades modellen från Artikel A till en organnivå-modell för AAA-tillväxt. Vidare inkorporerades modellen i ett “Fluid–Solid–Growth” (FSG) ramverk. En patientspecifik geometri hos bukaortan användes för att illustrera möjligheterna med modellen.

I Artikel C undersöktes utvecklingen av patientspecifika biomekaniska egenskaper hos AAA. Fyra patienter som skannats fem till åtta gånger med “Computed Tomography-Angiography” (CT-A) vid olika tillfällen analyserades. Flera icke triviala statistiska samband konstaterades mellan de analyserade parametrarna.

I Artikel D undersöktes effekten av olika tillväxt-kinematik för AAA tillväxt. En modell med transversellt-isotrop-i-tjockleken-tillväxt var den bäst lämpade för AAA tillväxt, medans antagandet om fullt-isotrop-tillväxt och transversellt-isotrop-i-planet-tillväxt producerade orimliga resultat. Dessutom gav modellering av vävnadsvolymsförändring ett förbättrat väggtjockleks resultat men en fortsatt överskattning av väggförtunningen under AAA-expansionen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 24 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 0605
Keyword
Aorta, Aneurysm, AAA, Blood Flow, Wall Shear Stress, Growth and Remodeling, Mixture Model, Growth Kinematics, Fluid-Solid-Growth, Aorta, Aneurysm, AAA, Blodflöde, Vägg Skjuvspänning, Tillväxt och Strukturförändring, Blandning Modell, Tillväxt Kinematik
National Category
Biomaterials Science Other Materials Engineering
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-197289 (URN)978-91-7729-216-6 (ISBN)
Public defence
2016-12-20, F3, Lindstedtsvägen 22, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20161201

Available from: 2016-12-01 Created: 2016-12-01 Last updated: 2016-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Grytsan, AndriiHolzapfel, Gerhard A.
By organisation
Solid Mechanics (Dept.)
In the same journal
Journal of Biomechanical Engineering
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 209 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf