Change search
ReferencesLink to record
Permanent link

Direct link
A Remotely Operated Aeroelastically Unstable Low Pressure Turbine Cascade for Turbomachinery Aeromechanics Education and Training-Remote Flutter Lab
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2015 (English)In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 137, no 3, 032507Article in journal (Refereed) Published
Abstract [en]

The use of advanced pedagogical methodologies in connection with advanced use of modern information technology for delivery enables new ways of communicating, of exchanging knowledge, and of learning that are gaining increasing relevance in our society. Remote laboratory exercises offer the possibility to enhance learning for students in different technical areas, especially to the ones not having physical access to laboratory facilities and thus spreading knowledge in a world-wide perspective. A new "Remote Flutter Laboratory" has been developed to introduce aeromechanics engineering students and professionals to aeroelastic phenomena in turbomachinery. The laboratory is world-wide unique in the sense that it allows global access for learners anywhere and anytime to a facility dedicated to what is both a complex and relevant area for gas turbine design and operation. The core of the system consists of an aeroelastically unstable turbine blade row that exhibits self-excited and self-sustained flutter at specific operating conditions. Steady and unsteady blade loading and motion data are simultaneously acquired on five neighboring suspended blades and the whole system allows for a distant-based operation and monitoring of the rig as well as for automatic data retrieval. This paper focuses on the development of the Remote Flutter Laboratory exercise as a hands-on learning platform for online and distant-based education and training in turbomachinery aeromechanics enabling familiarization with the concept of critical reduced frequency and of flutter phenomena. This laboratory setup can easily be used "as is" directly by any turbomachinery teacher in the world, free of charge and independent upon time and location with the intended learning outcomes as specified in the lab, but it can also very easily be adapted to other intended learning outcomes that a teacher might want to highlight in a specific course. As such it is also a base for a turbomachinery repository of advanced remote laboratories of global uniqueness and access. The present work documents also the pioneer implementation of the LabSocket System for the remote operation of a wind tunnel test facility from any Internet-enabled computer, tablet or smartphone with no end-user software or plug-in installation.

Place, publisher, year, edition, pages
2015. Vol. 137, no 3, 032507
Keyword [en]
Low-pressure turbine cascade
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-163464DOI: 10.1115/1.4028463ISI: 000350144900019ScopusID: 2-s2.0-84907855856OAI: diva2:800909
EU, FP7, Seventh Framework Programme, 283746

QC 20150408

Available from: 2015-04-08 Created: 2015-04-07 Last updated: 2015-04-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lucio, MonacoFransson, Torsten H.
By organisation
Heat and Power Technology
In the same journal
Journal of engineering for gas turbines and power
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 53 hits
ReferencesLink to record
Permanent link

Direct link