Change search
ReferencesLink to record
Permanent link

Direct link
A computational investigation of feedforward and feedback processing in metacontrast backward masking
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, School of Computer Science and Communication (CSC), Centres, Centre for High Performance Computing, PDC. Stockholm Brain Institute, Karolinska institutet, Sweden.
2015 (English)In: Frontiers in Psychology, ISSN 1664-1078, E-ISSN 1664-1078, Vol. 6, 6Article in journal (Refereed) Published
Abstract [en]

In human perception studies, visual backward masking has been used to understand the temporal dynamics of subliminal vs. conscious perception. When a brief target stimulus is followed by a masking stimulus after a short interval of <100 ms, performance on the target is impaired when the target and mask are in close spatial proximity. While the psychophysical properties of backward masking have been studied extensively, there is still debate on the underlying cortical dynamics. One prevailing theory suggests that the impairment of target performance due to the mask is the result of lateral inhibition between the target and mask in feedforward processing. Another prevailing theory suggests that this impairment is due to the interruption of feedback processing of the target by the mask. This computational study demonstrates that both aspects of these theories may be correct. Using a biophysical model of V1 and V2, visual processing was modeled as interacting neocortical attractors, which must propagate up the visual stream. If an activating target attractor in V1 is quiesced enough with lateral inhibition from a mask, or not reinforced by recurrent feedback, it is more likely to burn out before becoming fully active and progressing through V2 and beyond. Results are presented which simulate metacontrast backward masking with an increasing stimulus interval and with the presence and absence of feedback activity. This showed that recurrent feedback diminishes backward masking effects and can make conscious perception more likely. One model configuration presented a metacontrast noise mask in the same hypercolumns as the target, and produced type-A masking. A second model configuration presented a target line with two parallel adjacent masking lines, and produced type-B masking. Future work should examine how the model extends to more complex spatial mask configurations.

Place, publisher, year, edition, pages
Frontiers Research Foundation , 2015. Vol. 6, 6
National Category
URN: urn:nbn:se:kth:diva-161954DOI: 10.3389/FPSYG.2015.00006ISI: 000349837400001ScopusID: 2-s2.0-84926456233OAI: diva2:800975
Swedish Foundation for Strategic Research Swedish Research Council, VR-621-2004-3807Swedish eā€Science Research Center

QC 20150408. QC 20160226

Available from: 2015-04-08 Created: 2015-03-20 Last updated: 2016-02-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Silverstein, David N.
By organisation
Computational Biology, CBCentre for High Performance Computing, PDC
In the same journal
Frontiers in Psychology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 170 hits
ReferencesLink to record
Permanent link

Direct link