Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of Dead Time Losses in Energy Harvesting Boost Converters for Implantable Biosensors
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.ORCID iD: 0000-0002-2684-0724
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.ORCID iD: 0000-0003-3802-7834
2014 (English)In: NORCHIP, 2014, IEEE conference proceedings, 2014, 1-4 p.Conference paper, Published paper (Refereed)
Abstract [en]

Efficiency of an ultra-low power energy harvesting dc-dc converter depends on its losses and the power consumption of the control circuit. Unlike other loss mechanisms, losses related to dead times have not been thoroughly studied. Therefore, in most cases these losses are not adequately suppressed. This paper investigates dead time losses and their impact on the overall system efficiency. Simple expressions for fast estimation of dead time losses are derived. Analysis shows that in many applications where high voltage conversions are required, such as implantable biosensors, the efficiency reduction due to these losses can easily exceed 2%. The analysis is validated using an adaptive dead time circuit which minimizes the associated losses and improves the overall system efficiency according to the calculated values.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2014. 1-4 p.
Keyword [en]
Implantable biosensors, energy harvesting, DC-DC converters, dead time losses
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-163558DOI: 10.1109/NORCHIP.2014.7004714Scopus ID: 2-s2.0-84921470245OAI: oai:DiVA.org:kth-163558DiVA: diva2:801108
Conference
IEEE International Conference NORCHIP, Tampere, Finland, 27-28 October 2014
Funder
Swedish Research Council
Note

QC 20150408

Available from: 2015-04-08 Created: 2015-04-08 Last updated: 2017-05-05Bibliographically approved
In thesis
1. Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
Open this publication in new window or tab >>Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces.

Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency.

The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW. 

Abstract [sv]

Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt.

Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten.

Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 84 p.
Keyword
Energy harvesting interface, thermoelectric generator, glucose biofuel cell, power management, dc-dc converter, boost converter, zero-current switching, zero-voltage switching, implantable biosensor, Energiskördsgränssnitt, termoelektrisk generator, glukosbiobränslecell, energihantering, DC-DC-omvandlare, boost-omvandlare, inplanterbar biosensor
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-206588 (URN)978-91-7729-370-5 (ISBN)
Public defence
2017-06-09, Ka-Sal B (Sal Peter Weissglas), Kistagången 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170508

Available from: 2017-05-08 Created: 2017-05-05 Last updated: 2017-05-09Bibliographically approved

Open Access in DiVA

fulltext(429 kB)59 downloads
File information
File name FULLTEXT01.pdfFile size 429 kBChecksum SHA-512
16550e80a8a47bd1f79f507b87615b1d7fd439c3b3cce7d9eafa4b6010536e416343445332bc9adfb4c7e311a08af2832874ec71531f8e6cf5c0107030e4329d
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusIEEE Xplore

Authority records BETA

Rusu, Ana

Search in DiVA

By author/editor
Katic, JankoRodriguez, SaulRusu, Ana
By organisation
Integrated Devices and Circuits
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 59 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 156 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf