References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The derivative nonlinear Schrödinger equation on the half-linePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Physica D: Non-linear phenomena, ISSN 0167-2789, Vol. 237, no 23, 3008-3019 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 237, no 23, 3008-3019 p.
##### Keyword [en]

DNLS equation, Riemann-Hilbert problem, Boundary value problems, Nonlinear equations, Probability density function, Spectrum analysis, Boundary values, Compatibility conditions, Dinger equations, Hilbert problems, Nonlinear, Spectral functions, Spectral parameters, T dependences, Problem solving
##### National Category

Physical Sciences Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-163826DOI: 10.1016/j.physd.2008.07.005ISI: 000261463000003ScopusID: 2-s2.0-54149106278OAI: oai:DiVA.org:kth-163826DiVA: diva2:802367
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

We analyze the derivative nonlinear Schrödinger equation i qt + qx x = i (| q |2 q)x on the half-line using the Fokas method. Assuming that the solution q (x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter ζ. The jump matrix has explicit x, t dependence and is given in terms of the spectral functions a (ζ), b (ζ) (obtained from the initial data q0 (x) = q (x, 0)) as well as A (ζ), B (ζ) (obtained from the boundary values g0 (t) = q (0, t) and g1 (t) = qx (0, t)). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation. Given initial and boundary values {q0 (x), g0 (t), g1 (t)} such that there exist spectral functions satisfying the global relation, we show that the function q (x, t) defined by the above Riemann-Hilbert problem exists globally and solves the derivative nonlinear Schrödinger equation with the prescribed initial and boundary values.

QC 20150427

Available from: 2015-04-12 Created: 2015-04-12 Last updated: 2015-04-27Bibliographically approvedReferences$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});