Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On a novel integrable generalization of the nonlinear Schrödinger equation
University of Cambridge, United Kingdom .ORCID iD: 0000-0001-6191-7769
2009 (English)In: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 22, no 1, 11-27 p.Article in journal (Refereed) Published
Abstract [en]

We consider an integrable generalization of the nonlinear Schrödinger (NLS) equation that was recently derived by one of the authors using bi-Hamiltonian methods. This equation is related to the NLS equation in the same way as the Camassa-Holm equation is related to the KdV equation. In this paper we (a) use the bi-Hamiltonian structure to write down the first few conservation laws, (b) derive a Lax pair, (c) use the Lax pair to solve the initial value problem and (d) analyse solitons.

Place, publisher, year, edition, pages
2009. Vol. 22, no 1, 11-27 p.
National Category
Physical Sciences Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-163825DOI: 10.1088/0951-7715/22/1/002ISI: 000262356300004Scopus ID: 2-s2.0-58149330419OAI: oai:DiVA.org:kth-163825DiVA: diva2:802368
Note

QC 20150427

Available from: 2015-04-12 Created: 2015-04-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
In the same journal
Nonlinearity
Physical SciencesMathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf