Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons
University of Cambridge, United Kingdom .ORCID iD: 0000-0001-6191-7769
2009 (English)In: Inverse Problems, ISSN 0266-5611, E-ISSN 1361-6420, Vol. 25, no 11, 115006Article in journal (Refereed) Published
Abstract [en]

We analyze initial-boundary value problems for an integrable generalization of the nonlinear Schrödinger equation formulated on the half-line. In particular, we investigate the so-called linearizable boundary conditions, which in this case are of Robin type. Furthermore, we use a particular solution to verify explicitly all the steps needed for the solution of a well-posed problem.

Place, publisher, year, edition, pages
2009. Vol. 25, no 11, 115006
Keyword [en]
Dinger equation, Half-line, Initial-boundary value problems, Particular solution, Well-posed problems, Initial value problems, Solitons, Nonlinear equations
National Category
Mathematics Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-163820DOI: 10.1088/0266-5611/25/11/115006ISI: 000271481500006Scopus ID: 2-s2.0-70450195900OAI: oai:DiVA.org:kth-163820DiVA: diva2:802373
Note

QC 20150427

Available from: 2015-04-13 Created: 2015-04-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
In the same journal
Inverse Problems
MathematicsPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf