Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On a novel integrable generalization of the sine-Gordon equation
Leibniz Universit├Ąt Hannover, Germany .ORCID iD: 0000-0001-6191-7769
2010 (English)In: Journal of Mathematical Physics, ISSN 0022-2488, E-ISSN 1089-7658, Vol. 51, no 2, 055912JMPArticle in journal (Refereed) Published
Abstract [en]

We consider an integrable generalization of the sine-Gordon (sG) equation that was earlier derived by one of the authors using bi-Hamiltonian methods. This equation is related to the sG equation in the same way that the Camassa-Holm equation is related to the Korteweg-de Vries equation. In this paper we (a) derive a Lax pair, (b) use the Lax pair to solve the initial-value problem on the line, (c) analyze solitons, (d) show that the generalized sG and sG equations are related by a Liouville transformation, (e) derive conservation laws, and (f) analyze traveling-wave solutions.

Place, publisher, year, edition, pages
2010. Vol. 51, no 2, 055912JMP
National Category
Physical Sciences Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-163819DOI: 10.1063/1.3272086ISI: 000275032100055Scopus ID: 2-s2.0-77952299556OAI: oai:DiVA.org:kth-163819DiVA: diva2:802375
Note

QC 20150427

Available from: 2015-04-13 Created: 2015-04-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
In the same journal
Journal of Mathematical Physics
Physical SciencesMathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf