Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Boundary Value Problems for the Stationary Axisymmetric Einstein Equations: A Disk Rotating Around a Black Hole
Baylor University, United States .ORCID iD: 0000-0001-6191-7769
2011 (English)In: Communications in Mathematical Physics, ISSN 0010-3616, E-ISSN 1432-0916, Vol. 304, no 3, 585-635 p.Article in journal (Refereed) Published
Abstract [en]

We solve a class of boundary value problems for the stationary axisymmetric Einstein equations involving a disk rotating around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.

Place, publisher, year, edition, pages
2011. Vol. 304, no 3, 585-635 p.
National Category
Mathematics Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-163811DOI: 10.1007/s00220-011-1243-8ISI: 000290231600001Scopus ID: 2-s2.0-79955761540OAI: oai:DiVA.org:kth-163811DiVA: diva2:802381
Note

QC 20150427

Available from: 2015-04-13 Created: 2015-04-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
In the same journal
Communications in Mathematical Physics
MathematicsPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf