References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The solution of the global relation for the derivative nonlinear Schrodinger equation on the half-linePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2011 (English)In: Physica D: Non-linear phenomena, ISSN 0167-2789, Vol. 240, no 6, 512-525 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2011. Vol. 240, no 6, 512-525 p.
##### Keyword [en]

Derivative nonlinear Schrdinger equation, Dirichlet-to-Neumann map, Initial-boundary value problem, Integrable system, Boundary data, Boundary values, DNLS equation, Effective solution, Half-line, Initial-boundary value problems, Integrable systems, Jump conditions, Nonlinear integral equations, Riemann Hilbert problems, Schrdinger equations, Well-posed problems, Initial value problems, Integral equations, Ordinary differential equations, Nonlinear equations
##### National Category

Physical Sciences Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-163812DOI: 10.1016/j.physd.2010.11.004ISI: 000287386600005ScopusID: 2-s2.0-78751571215OAI: oai:DiVA.org:kth-163812DiVA: diva2:802382
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

We consider initial-boundary value problems for the derivative nonlinear Schrdinger (DNLS) equation on the half-line x>0. In a previous work, we showed that the solution q(x,t) can be expressed in terms of the solution of a RiemannHilbert problem with jump condition specified by the initial and boundary values of q(x,t). However, for a well-posed problem, only part of the boundary values can be prescribed; the remaining boundary data cannot be independently specified, but are determined by the so-called global relation. In general, an effective solution of the problem therefore requires solving the global relation. Here, we present the solution of the global relation in terms of the solution of a system of nonlinear integral equations. This also provides a construction of the Dirichlet-to-Neumann map for the DNLS equation on the half-line.

QC 20150427

Available from: 2015-04-13 Created: 2015-04-12 Last updated: 2015-04-27Bibliographically approvedReferences$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});