Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Degasperis-Procesi equation on the half-line
Baylor University, United States .ORCID iD: 0000-0001-6191-7769
2013 (English)In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 76, no 1, 122-139 p.Article in journal (Refereed) Published
Abstract [en]

We analyze a class of initial-boundary value problems for the Degasperis-Procesi equation on the half-line. Assuming that the solution u(x,t) exists, we show that it can be recovered from its initial and boundary values via the solution of a Riemann-Hilbert problem formulated in the plane of the complex spectral parameter k.

Place, publisher, year, edition, pages
2013. Vol. 76, no 1, 122-139 p.
Keyword [en]
Boundary value problem, Degasperis-Procesi equation, Inverse spectral theory, Riemann-Hilbert problem, Boundary values, Degasperis-Procesi equations, Half-line, Initial-boundary value problems, Riemann Hilbert problems, Spectral parameters, Spectral theory, Boundary value problems, Initial value problems, Mathematical techniques
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-163803DOI: 10.1016/j.na.2012.08.009ISI: 000310502100011Scopus ID: 2-s2.0-84867047790OAI: oai:DiVA.org:kth-163803DiVA: diva2:802389
Note

QC 20150417

Available from: 2015-04-13 Created: 2015-04-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
In the same journal
Nonlinear Analysis
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf