Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The KdV equation on the half-line: The Dirichlet to Neumann map
Baylor University, United States; University of Cambridge, United Kingdom .ORCID iD: 0000-0001-6191-7769
2013 (English)In: Journal of Physics A: Mathematical and Theoretical, ISSN 1751-8113, E-ISSN 1751-8121, Vol. 46, no 34, 345203Article in journal (Refereed) Published
Abstract [en]

We consider initial-boundary value problems for the KdV equation u t + ux + 6uux + uxxx = 0 on the half-line x 0. For a well-posed problem, the initial data u(x, 0) as well as one of the three boundary values {u(0, t), ux (0, t), uxx (0, t)} can be prescribed; the other two boundary values remain unknown. We provide a characterization of the unknown boundary values for the Dirichlet as well as the two Neumann problems in terms of a system of nonlinear integral equations. The characterizations are effective in the sense that the integral equations can be solved perturbatively to all orders in a well-defined recursive scheme.

Place, publisher, year, edition, pages
2013. Vol. 46, no 34, 345203
National Category
Physical Sciences Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-163795DOI: 10.1088/1751-8113/46/34/345203ISI: 000322910800007Scopus ID: 2-s2.0-84882411157OAI: oai:DiVA.org:kth-163795DiVA: diva2:802397
Note

QC 20150417

Available from: 2015-04-13 Created: 2015-04-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
In the same journal
Journal of Physics A: Mathematical and Theoretical
Physical SciencesMathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf