Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of a Morphology-based Analysis Framework for Asphalt Pavements
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. (Highway and Railway Engineering)ORCID iD: 0000-0003-2849-5263
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The morphology of asphalt mixtures plays a vital role in their properties and behaviour. The work in this thesis is aimed at developing a fundamental understanding of the effect of the asphalt morphology on the strength properties and deformation mechanisms for development of morphology-based analysis framework for long-term response prediction. Experimental and computational methods are used to establish the relationship between the mixture morphology and response. Micromechanical modeling is employed to understand the complex interplay between the asphalt mixture constituents resulting in strain localization and stress concentrations which are precursors to damage initiation and accumulation. Based on data from actual asphalt field cores, morphology-based material models which considers the influence of the morphology on the long-term material properties with respect to damage resistance, healing and ageing are developed. The morphology-based material models are implemented in a hot-mix asphalt (HMA) fracture mechanics framework for pavement performance prediction. The framework is able to predict top-down cracking initiation to a reasonable extent considering the variability of the input parameters. A thermodynamic based model for damage and fracture is proposed. The results from the study show that the morphology is an important factor which should be taken into consideration for determining the short- and long-term response of asphalt mixtures. Further understanding of the influence of the morphology will lead to the development of fundamental analytical techniques in design to establish the material properties and response to loads. This will reduce the empiricism associated with pavement design, reduce need for extensive calibration and validation, increase the prediction capability of pavement design tools, and advance pavement design to a new level science and engineering.

Abstract [sv]

Asfaltblandningars morfologi har en avgörande betydelse för deras egenskaper och beteenden. Arbetet i denna avhandling syftar till att utveckla en grundläggande förståelse för effekten av asfaltsmorfologin för deras hållfasthetsegenskaper och deformationsmekanismer och utveckling av ramverksanalysmorfologi baserat på långsiktig förutsägelse. Experimentella beräkningsmetoder används för att fastställa sambandet mellan blandningens morfologi och respons. Mikromekanisk modellering används för att förstå det komplexa samspelet mellan asfaltmassans beståndsdelar som resulterar i spänningslokalisering och spänningskoncentrationer som är föregångare till initiering av skador och ackumulation. Morfologibaserade materialmodeller beaktar påverkan av morfologin på de långsiktiga materialegenskaperna med avseende på skademotstånd, helande samt åldrande, och är utvecklade från data hos verkliga asfaltsfältskärnor. Morfologinbaserade materialmodeller är implementerade i en varmblandad asfalt-( HMA )-brottmekanik-ramverk för förutsägelse av beläggningsprestanda. Ramverket kan i rimlig utsträckning förutspå variationen i ingångsparametrarna ’top-down’ sprickbildningsinitiering. En termodynamiskbaserat ramverk föreslås för skador och brott. Resultaten från studien visar att morfologin är en viktig faktor som bör beaktas för att bestämma respons av asfaltblandningar på kort och lång sikt. Ytterligare förståelse av inverkan av morfologin kommer att leda till utvecklingen av grundläggande analytiska tekniker i design för fastställning av materialegenskaper och belastningars respons. Detta kommer att minska empirism som förknippas med beläggningskonstruktionen, minska behovet av omfattande kalibrering och validering, öka förutsägelseförmågan av designverktyg för beläggningen, samt avancera beläggningsdesign till en ny vetenskaplig nivå och ingenjörskonst.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. , ix, 24 p.
Series
TRITA-BYMA, ISSN 0349-5752 ; 2015:2
Keyword [en]
Morphology, damage, X-ray computed tomography, top-down cracking, fracture
Keyword [sv]
Morfologi, skador, röntgendatortomografi, ’top-down’sprickbildning, fraktur
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering; Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-164863OAI: oai:DiVA.org:kth-164863DiVA: diva2:806357
Presentation
2015-05-08, B26, Brinellvägen 23, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Translational Program in Diabetes Research, Education and Care
Note

QC 20150420

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2015-06-24Bibliographically approved
List of papers
1. Mechanics-based Topdown Fatigue Cracking Initiation Prediction Framework for Asphaltic Pavements
Open this publication in new window or tab >>Mechanics-based Topdown Fatigue Cracking Initiation Prediction Framework for Asphaltic Pavements
2015 (English)In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402, Vol. 16, no 4Article in journal (Refereed) Published
Abstract [en]

In this paper, a new mechanics-based top-down fatigue cracking analysis framework is presented for asphalt pavements. A new mixture morphology-based set of material sub-models is presented for characterising key mixture properties and their change over time. Predicting the load induced top-down fatigue crack initiation (CI) time by utilising comprehensive mixture properties creates the possibility of optimising the mixture morphology while taking into account its subsequent effect on long-term pavement performance. The new framework was calibrated and subsequently validated against a number of field pavement sections with varying traffic levels that are representative for current practices and which have a wide range in material properties. The framework accounts the change in key mixture properties due to ageing and mixture-healing effect on damage accumulation while determining the overall effect of design inputs on cracking performance. Model calibration and validation were achieved based on the healing potential of the asphalt mixture. It was found out that the CI predictions for all the sections are in general agreement with the observed performance in the field, thus giving credibility for the framework.

Place, publisher, year, edition, pages
Taylor & Francis, 2015
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-164887 (URN)10.1080/14680629.2015.1055335 (DOI)
Note

QC 20161220

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2017-12-04Bibliographically approved
2. Towards Asphalt Mixture Morphology Evaluation with the Virtual Specimen Approach
Open this publication in new window or tab >>Towards Asphalt Mixture Morphology Evaluation with the Virtual Specimen Approach
2015 (English)In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402Article in journal (Refereed) Published
Abstract [en]

The morphology of asphalt mixture can be defined as a set of parameters describing the geo-metrical characteristics of its constituent materials, their relative proportions as well as spatialarrangement in the mixture. The present study is carried out to investigate the effect of themorphology on its meso- and macro-mechanical response. An analysis approach is used forthe meso-structural characterisation based on the X-ray computed tomography (CT) data.Image processing techniques are used to systematically vary the internal structure to obtaindifferent morphology structures. A morphology framework is used to characterise the aver-age mastic coating thickness around the main load carrying structure in the structures. Theuniaxial tension simulation shows that the mixtures with the lowest coating thickness exhibitbetter inter-particle interaction with more continuous load distribution chains between adja-cent aggregate particles, less stress concentrations and less strain localisation in the masticphase.

Place, publisher, year, edition, pages
Taylor & Francis, 2015
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-164891 (URN)10.1080/14680629.2015.1098561 (DOI)000379747600004 ()2-s2.0-84945206184 (Scopus ID)
Note

QC 20160204

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2017-12-04Bibliographically approved
3. Energy-Based Damage and Fracture Framework for Viscoelastic Asphalt Concrete
Open this publication in new window or tab >>Energy-Based Damage and Fracture Framework for Viscoelastic Asphalt Concrete
2015 (English)In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 145, 67-85 p.Article in journal (Refereed) Published
Abstract [en]

A framework based on the continuum damage mechanics and thermodynamics of irreversible processes using internal state variables is used to characterize the distributed damage in viscoelastic asphalt materials in the form of micro-crack initiation and accumulation. At low temperatures and high deformation rates, micro-cracking is considered as the source of nonlinearity and thus the cause of deviation from linear viscoelastic response. Using a non-associated damage evolution law, the proposed model shows the ability to describe the temperature-dependent processes of micro-crack initiation, evolution and macro-crack formation with good comparison to the material response in the Superpave indirect tensile (IDT) strength test.

National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-164894 (URN)10.1016/j.engfracmech.2015.07.003 (DOI)000362612900005 ()2-s2.0-84937231899 (Scopus ID)
Note

Updated from submitted to published.

QC 20151104

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

Licentiate Thesis(3495 kB)183 downloads
File information
File name FULLTEXT04.pdfFile size 3495 kBChecksum SHA-512
386b48cbcbfb76faddc7b37fd3419c3e7af11d6dfeec040e5d929c7206705d351674dd713c34ac8079f1bd1d2ae1c60b936f34cdeb85fe340de3da45864570cd
Type fulltextMimetype application/pdf

Authority records BETA

Onifade, Ibrahim

Search in DiVA

By author/editor
Onifade, Ibrahim
By organisation
Building Materials
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 188 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1959 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf