Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanics-based Topdown Fatigue Cracking Initiation Prediction Framework for Asphaltic Pavements
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.ORCID iD: 0000-0001-7174-7214
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.ORCID iD: 0000-0003-2849-5263
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.ORCID iD: 0000-0002-0596-228X
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.ORCID iD: 0000-0003-0889-6078
2015 (English)In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402, Vol. 16, no 4Article in journal (Refereed) Published
Abstract [en]

In this paper, a new mechanics-based top-down fatigue cracking analysis framework is presented for asphalt pavements. A new mixture morphology-based set of material sub-models is presented for characterising key mixture properties and their change over time. Predicting the load induced top-down fatigue crack initiation (CI) time by utilising comprehensive mixture properties creates the possibility of optimising the mixture morphology while taking into account its subsequent effect on long-term pavement performance. The new framework was calibrated and subsequently validated against a number of field pavement sections with varying traffic levels that are representative for current practices and which have a wide range in material properties. The framework accounts the change in key mixture properties due to ageing and mixture-healing effect on damage accumulation while determining the overall effect of design inputs on cracking performance. Model calibration and validation were achieved based on the healing potential of the asphalt mixture. It was found out that the CI predictions for all the sections are in general agreement with the observed performance in the field, thus giving credibility for the framework.

Place, publisher, year, edition, pages
Taylor & Francis, 2015. Vol. 16, no 4
National Category
Infrastructure Engineering
Identifiers
URN: urn:nbn:se:kth:diva-164887DOI: 10.1080/14680629.2015.1055335OAI: oai:DiVA.org:kth-164887DiVA: diva2:806425
Note

QC 20161220

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Development of a Morphology-based Analysis Framework for Asphalt Pavements
Open this publication in new window or tab >>Development of a Morphology-based Analysis Framework for Asphalt Pavements
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The morphology of asphalt mixtures plays a vital role in their properties and behaviour. The work in this thesis is aimed at developing a fundamental understanding of the effect of the asphalt morphology on the strength properties and deformation mechanisms for development of morphology-based analysis framework for long-term response prediction. Experimental and computational methods are used to establish the relationship between the mixture morphology and response. Micromechanical modeling is employed to understand the complex interplay between the asphalt mixture constituents resulting in strain localization and stress concentrations which are precursors to damage initiation and accumulation. Based on data from actual asphalt field cores, morphology-based material models which considers the influence of the morphology on the long-term material properties with respect to damage resistance, healing and ageing are developed. The morphology-based material models are implemented in a hot-mix asphalt (HMA) fracture mechanics framework for pavement performance prediction. The framework is able to predict top-down cracking initiation to a reasonable extent considering the variability of the input parameters. A thermodynamic based model for damage and fracture is proposed. The results from the study show that the morphology is an important factor which should be taken into consideration for determining the short- and long-term response of asphalt mixtures. Further understanding of the influence of the morphology will lead to the development of fundamental analytical techniques in design to establish the material properties and response to loads. This will reduce the empiricism associated with pavement design, reduce need for extensive calibration and validation, increase the prediction capability of pavement design tools, and advance pavement design to a new level science and engineering.

Abstract [sv]

Asfaltblandningars morfologi har en avgörande betydelse för deras egenskaper och beteenden. Arbetet i denna avhandling syftar till att utveckla en grundläggande förståelse för effekten av asfaltsmorfologin för deras hållfasthetsegenskaper och deformationsmekanismer och utveckling av ramverksanalysmorfologi baserat på långsiktig förutsägelse. Experimentella beräkningsmetoder används för att fastställa sambandet mellan blandningens morfologi och respons. Mikromekanisk modellering används för att förstå det komplexa samspelet mellan asfaltmassans beståndsdelar som resulterar i spänningslokalisering och spänningskoncentrationer som är föregångare till initiering av skador och ackumulation. Morfologibaserade materialmodeller beaktar påverkan av morfologin på de långsiktiga materialegenskaperna med avseende på skademotstånd, helande samt åldrande, och är utvecklade från data hos verkliga asfaltsfältskärnor. Morfologinbaserade materialmodeller är implementerade i en varmblandad asfalt-( HMA )-brottmekanik-ramverk för förutsägelse av beläggningsprestanda. Ramverket kan i rimlig utsträckning förutspå variationen i ingångsparametrarna ’top-down’ sprickbildningsinitiering. En termodynamiskbaserat ramverk föreslås för skador och brott. Resultaten från studien visar att morfologin är en viktig faktor som bör beaktas för att bestämma respons av asfaltblandningar på kort och lång sikt. Ytterligare förståelse av inverkan av morfologin kommer att leda till utvecklingen av grundläggande analytiska tekniker i design för fastställning av materialegenskaper och belastningars respons. Detta kommer att minska empirism som förknippas med beläggningskonstruktionen, minska behovet av omfattande kalibrering och validering, öka förutsägelseförmågan av designverktyg för beläggningen, samt avancera beläggningsdesign till en ny vetenskaplig nivå och ingenjörskonst.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. ix, 24 p.
Series
TRITA-BYMA, ISSN 0349-5752 ; 2015:2
Keyword
Morphology, damage, X-ray computed tomography, top-down cracking, fracture, Morfologi, skador, röntgendatortomografi, ’top-down’sprickbildning, fraktur
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering; Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-164863 (URN)
Presentation
2015-05-08, B26, Brinellvägen 23, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Translational Program in Diabetes Research, Education and Care
Note

QC 20150420

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2015-06-24Bibliographically approved
2. Reliability-based Design Procedure for Flexible Pavements
Open this publication in new window or tab >>Reliability-based Design Procedure for Flexible Pavements
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Load induced top-down fatigue cracking has been recognized recently as a major distress phenomenon in asphalt pavements. This failure mode has been observed in many parts of the world, and in some regions, it was found to be more prevalent and a primary cause of pavements failure. The main factors which are identified as potential causes of top down fatigue cracking are primarily linked to age hardening, mixtures fracture resistance and unbound layers stiffness. Mechanistic Empirical analytical models, which are based on hot mix asphalt fracture mechanics (HMA-FM) and that could predict crack initiation time and propagation rate, have been developed and shown their capacity in delivering acceptable predictions. However, in these methods, the effect of age hardening and healing is not properly accounted and moreover, these models do not consider the effect of mixture morphology influence on long term pavement performance. Another drawback of these models is, as analysis tools they are not suitable to be used for pavement design purpose. The main objective of this study is to develop a reliability calibrated design framework in load resistance factor design (LRFD) format which could be implemented to design pavement sections against top down fatigue cracking.

For this purpose, asphalt mixture morphology based sub-models were developed and incorporated to HMA-FM to characterize the effect of aging and degradation on fracture resistance and healing potential. These sub-models were developed empirically exploiting the observed relation that exist between mixture morphology and fracture resistance. The developed crack initiation prediction model was calibrated and validated using pavement sections that have high quality laboratory data and observed field performance history. As traffic volume was identified in having a dominant influence on predicted performance, two separate model calibration and validation studies were undertaken based on expected traffic volume. The predictions result for both model calibration and validation was found to be in an excellent agreement with the observed performance in the field.

A LRFD based design framework was suggested that could be implemented to optimize pavement sections against top-down fatigue cracking. To achieve this objective, pavement sections with various design target reliabilities and functional requirements were analyzed and studied.  A simplified but efficient limit state equation was generated using a central composite design (CCD) based response surface methodology, and FORM based reliability analysis was implemented to compute reliabilities and formulate associated partial safety factors. A design example using the new partial safety factors have clearly illustrated the potential of the new method, which could be used to supplement existing design procedures.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. x, 20 p.
Series
TRITA-JOB. LIC, ISSN 1650-951X ; 2027
Keyword
Top-Down fatigue cracking, asphalt mixture morphology, fracture mechanics, response surface, reliability analysis, load resistance factor design
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-165280 (URN)
Presentation
2015-05-08, B23, Brinellvägen 23, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20150427

Available from: 2015-04-27 Created: 2015-04-24 Last updated: 2015-04-27Bibliographically approved
3. Mechanics-based Design Framework for Flexible Pavements
Open this publication in new window or tab >>Mechanics-based Design Framework for Flexible Pavements
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Load induced top-down fatigue cracking has been recognized recently as a major distress phenomenon in asphalt pavements. This paper presents a mechanics-based design framework in load and resistance factor design (LRFD) format for the top-down fatigue cracking performance evaluation of flexible pavements. This was achieved by enhancing further the hot mix asphalt fracture mechanics (HMA-FM) model through the incorporation of mixture morphology influence on key fracture properties, and incorporating partial safety factors to account for variabilities and uncertainties. The analysis framework was calibrated and validated using pavement sections that have high quality laboratory data and well documented field performance histories. Moreover, as traffic volume was identified in having a dominant influence on predicted performance, a further investigation was performed to establish and evaluate truck traffic characterization parameters effect on predicted results.

A two-component reliability analysis methodology, which uses central composite design (CCD) based response surface approach for surrogate model generation and the first order reliability method (FORM) for reliability estimation was used for the development of the LRFD mechanics-based design framework. The effectiveness of the design framework was investigated through design examples, and the results have shown that the formulated partial safety factors have accounted effectively the variabilities involved in the design process. Further investigation was performed to establish the influence design inputs variabilities have on target reliabilities through case studies that combine input variabilities in a systematic way. It was observed from the results that the coefficient of variation (COV) level of the variability irrespective of the distribution type used have a significant influence on estimated target reliability.

Abstract [sv]

Lastinducerade utmattningssprickor från ytan har nyligen identifierats som en betydande brottmekanism i asfaltbeläggningar. Denna avhandling presenterar ett mekanik-baserat ramverk i last- och motståndsfaktorer konstruktionsformat (LRFD) för utvärdering av utmattningssprickor från ytan för asfaltsbeläggningar. Detta uppnåddes genom att ytterligare förbättra brottmekanikmodellen för varmblandad asfalt (HMA-FM) genom integreringen av blandingens morfologieffekt på brottegenskaper samt säkerhetsfaktorer för att beakta variabilitet och osäkerheter. Ramverket kalibrerades och validerades med hjälp av vägar med säkerställda egenskaper och väldokumenterad prestanda. Eftersom trafikvolymen identifierades att ha ett dominerande inflytande på förväntad prestanda, utfördes vidare en utredning för att fastställa effekten av lastbilstrafikens karakteriseringsparametrar på förutsedd prestanda.

Tillförlitlighetsanalysen uppnåddes genom att implementera en tvåkomponents tillförlitlighetsanalys där en metod som kallas ”central composite design” (CCD), vilken skapar en surrogatmodell, och första ordningens tillförlitlighetsmetod (FORM) för beräkning av tillförlitligheten. Effektiviteten i det mekanik-baserade konstruktionsramverket undersöktes genom konstruktionsexempel och resultaten har tydligt visat att de formulerade partialkoefficienter effektivt har beaktat variabiliteten inom konstruktionsprocessen. Ytterligare undersökningar utfördes för att fastställa påverkan som indatas variabilitet har på den förutbestämda tillförlitligheten genom fallstudier där indatans variabilitet ändras systematiskt. Det observerades från resultaten att variabilitetens variationskoefficient (COV) har en signifikant inverkan på tillförlitligheten, oberoende av fördelningstyp.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 59 p.
Series
TRITA-JOB. PHD, 1024
Keyword
Mechanics-based, asphalt, fatigue, reliability, traffic, variability, Mekanik-baserade, utmattningssprickor, pålitlighet, lastbilstrafiken, variabilitet
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-196883 (URN)978-91-7729-223-4 (ISBN)
Public defence
2016-12-16, K1, Teknikringen 56, Stockholm, 10:30 (English)
Opponent
Supervisors
Funder
Swedish Transport Administration
Note

QC 20161125

Available from: 2016-11-25 Created: 2016-11-24 Last updated: 2016-11-25Bibliographically approved
4. Development of Energy-based Damage and Plasticity Models for Asphalt Concrete Mixtures
Open this publication in new window or tab >>Development of Energy-based Damage and Plasticity Models for Asphalt Concrete Mixtures
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Characterizing the full range of damage and plastic behaviour of asphalt mixtures under varying strain-rates and stress states is a complex and challenging task. One reason for this  is partly due to the strain rate and temperature dependent nature of the material as well as the variation in the properties of the constituent materials that make up the composite asphalt mixture. Existing stress-based models for asphalt concrete materials are developed based on mechanics principles, but these models are, however, limited in their application for actual pavement analysis and design since rate dependency parameters are needed in the constitutive model to account for the influence of the strain rate on the stress-based yield and evolution criteria. Till date, we are yet to arrive at simple and comprehensive constitutive models that can be used to model the behaviour of asphalt mixture over a wide range of strain-rate which is experienced in the actual pavement sections. The aim of this thesis is to develop an increased understanding of the strength and deformation mechanism of asphalt mixtures through multi-scale modeling and to develop simple and comprehensive continuum models to characterize the non-linear behaviour of the material under varying stress-states and conditions. An analysis framework is developed for the evaluation of the influence of asphalt mixture morphology on its mechanical properties and response using X-Ray CT and digital image processing techniques. The procedure developed in the analysis framework is then used to investigate the existence of an invariant critical energy threshold for meso-crack initiation which serves as the basis for the development of a theory for the development of energy-based damage and plastic deformation models for asphalt mixtures. A new energy-based viscoelastic damage model is developed and proposed based on continuum damage mechanics (CDM) and the thermodynamics of irreversible processes. A second order damage variable tensor is introduced to account for the distributed damage in the material in the different principal damage directions. In this way, the material response in tension and compression can be decoupled and the effects of both tension- and compression stress states on the material behaviour can be accounted for adequately. Based on the finding from the energy-based damage model, an equivalent micro-crack stress approach is developed and proposed for the damage and fracture characterization of asphalt mixtures. The effective micro-crack stress approach takes account of the material stiffness and a critical energy threshold for micro-crack initiation in the characterization of damage and fracture properties of the mixture. The effective micro-crack stress approach is developed based on fundamental mechanics principles and it reduces to the Griffith's energy balance criterion when purely elastic materials are considered without the need for the consideration of the surface energy and a crack size in the determination of the fracture stress. A new Continuum Plasticity Mechanics (CPM) model is developed within the framework of thermodynamics to describe the plastic behaviour of asphalt concrete material with energy-based criteria derived for the initiation and evolution of plastic deformation. An internal state variable termed the "plasticity variable" is introduced to described the distributed dislocation movement in the microstructure. The CPM model unifies aspects of existing elasto-plastic and visco-plastic theories in one theory and shows particular strength in the modeling of rate-dependent plastic behaviour of materials without the need for the consideration of rate dependency parameters in the constitutive relationships. The CPM model is further extended to consider the reduction in the stiffness properties with incremental loading and to develop a unified energy-based damage and plasticity model. The models are implemented in a Finite Element (FE) analysis program for the validation of the models. The result shows that the energy-based damage and plastic deformation models are capable of predicting the behaviour of asphalt concrete mixtures under varying stress-states and strain-rate conditions. The work in this thesis provides the basis for the development of more fundamental understanding of the asphalt concrete material response and the application of sound and solid mechanics principles in the analysis and design of pavement structures.

Abstract [sv]

En heltäckande karakterisering av skador och plastiska beteende hos asfaltblandningar under varierande belastningshastighet och spänningstillstånd är en komplex och svår uppgift. En orsak till detta är relaterat till materialets belastningshastighet- och temperaturberoende, såväl som variationen i materialegenskaperna hos de ingående komponenterna i den sammansatta asfaltblandningen. Befintliga spänningsbaserade modeller för asfaltbetongmaterial är utvecklade baserade på mekanikprinciper, men dessa modeller är begränsade när det gäller analys och design av verkliga asfaltsbeläggningar eftersom hastighetsberoende parametrar behövs i den konstitutiva modellen även med hänsyn till töjningshastighetens inverkan på kriterier för gränser och utveckling av spänningstillstånd. Det finns därför behov av att utveckla enkla men ändå heltäckande konstitutiva modeller som kan användas för att modellera beteendet hos asfaltmassan över ett brett spektrum av belastningshastigheter för olika av sektioner asfaltsbeläggningar. Syftet med denna avhandling är att öka förståelsen av hållfasthets- och deformationsmekanismer för asfaltblandningar genom multi-modellering. Målet är att utveckla enkla och heltäckande kontinuummodeller som karakteriserar materialets olinjära beteende under varierande spänningstillstånd och betingelser. Ett analysramverk har utvecklats för utvärdering av påverkan av asfaltmassans morfologi på dess mekaniska egenskaper och beteende med hjälp av röntgendatortomografi och digital bildbehandlingsteknik. Detta förfarande har sedan använts för att undersöka förekomsten av inneboende kritiska tröskelvärden för brottenergin för mesosprickinitiering vilket i sin tur ligger till grund för utvecklingen av en teori för modellering av energibaserade skador och plastisk deformation hos asfaltblandningar. En ny energidensitet baserad viskoelastisk skademodell utvecklas och föreslås utgå från kontinuum-skade-mekanik (CDM) och termodynamik för irreversibla processer. En andra ordningens skadevariabeltensor införs för att ta hänsyn till  skadedistributionen i materialen i de olika principiella skaderiktningarna. På detta sätt kan materialets respons i drag- och tryckbelastning separeras och effekterna av spänningstillstånd i både drag och tryck kan beaktas på ett adekvat sätt. Baserat på resultaten från den energibaserade skademodellen utvecklas och föreslås en motsvarande metod för mikrosprickspänning gällande skade- och brottkarakteriseringen av asfaltblandningar. Metoden för den effektiva mikrosprickspänningen tar hänsyn till materialets styvhet och en kritisk tröskelenergi för mikrosprickinitiering för karakteriseringen av skador och brottegenskaper hos blandningen. Denna metod är utvecklad baserat på grundläggande mekanikprinciper och kan för rent elastiska material reduceras till Griffiths energibalanskriterium utan hänsyn till ytenergi och sprickstorlek vid bestämningen av brottspänningen. En ny termodynamikbaserad modell för kontinuumplasticitetsmekanik (CPM) utvecklas för att beskriva det plastiska beteendet hos asfaltbetongmaterial med energibaserade kriterier härledda för initiering och progression av plastisk deformation. En intern tillståndsvariabel kallad "plasticitetvariabeln" införs för att beskriva den fördelade dislokationsrörelsen i mikrostrukturen. CPM-modellen förenar befintliga elasto-plastiska och visko-plastiska teorier i en teori och visar sig vara särskilt effektiv i modelleringen av hastighetsberoende plastiskt beteende hos material utan att behöva beakta hastighetsberoende parametrar i de konstitutiva sambanden. CPM-modellen utvidgas ytterligare för att kunna beakta reduktionen av styvheten med stegvis ökad belastning och för att utveckla en enhetlig energibaserad skade- och plasticitetmodell. Modellerna är implementerade i ett finit element (FE)-analysprogram för validering av modellerna. Resultatet visar att de energibaserade modellerna för skador och plastisk deformation kan förutsäga beteendet hos asfaltbetongblandningar under varierande spänningstillstånd och töjningshastighetsförhållanden. Arbetet i denna avhandling utgör grunden för utvecklingen av mer grundläggande förståelse av asfaltbetongmaterialets respons och tillämpningen av sunda och robusta mekanikprinciper i analys och design av asfaltstrukturer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 88 p.
Series
TRITA-BYMA, ISSN 0349-5752 ; 2017:01
Keyword
energy-based models, damage, X-ray computed tomography, continuum plasticity mechanics CPM, effective micro-crack stress
National Category
Civil Engineering
Research subject
Transport Science
Identifiers
urn:nbn:se:kth:diva-198663 (URN)978-91-7729-242-5 (ISBN)
Public defence
2017-01-27, V2, Teknikringen 76, Stockholm, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Transport Administration
Note

QC 20161220

Available from: 2016-12-20 Created: 2016-12-19 Last updated: 2016-12-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Onifade, IbrahimJelagin, DenisBirgisson, Björn

Search in DiVA

By author/editor
Dinegdae, Yared H.Onifade, IbrahimJelagin, DenisBirgisson, Björn
By organisation
Highway and Railway Engineering
In the same journal
International Journal on Road Materials and Pavement Design
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 221 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf