Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation of Large Scale Erosion of a Stratified Helium Layer by a Vertical Air Jet using the GOTHIC Code
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0003-3132-7252
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0002-0683-9136
2014 (English)Conference paper, Published paper (Refereed)
Abstract [en]

In case of a severe core degradation in a Light Water Reactor (LWR), significant amount of hydrogen can be produced posing a risk of hydrogen burning and detonation. Reliable prediction of hydrogen build-up, stratification, and mixing in the containment is of paramount importance since the phenomena affect hydrogen distribution in the containment. In this paper, we present a modeling approach using the GOTHIC code. The simulation results were compared against experimental data from the ST1-7 experiment performed in the PANDA facility at the Paul Scherrer Institute (PSI). The ST1-7 experiment consists of an air jet impingement onto a stratified helium layer. The modelling approach uses coupled volumes to introduce in each region of the computational domain (i) adequate mesh resolutions to resolve the gradients of the flow and (ii) appropriate turbulence models in order to resolve locally dominant flow structures. With the adaptive mesh, only about 7400 cells for the 2 PANDA vessels (4 m diameter by 8 m in height cylinders with an interconnecting pipe) is enough to provide reasonably accurate results. We found that using the k-epsilon standard model for the jet region and the mixing length model for the rest of the domain, has provided remarkably good agreement with the experimental data. The erosion of the helium stratified layer before and after the air injection is discussed in detail.

Place, publisher, year, edition, pages
2014.
Keyword [en]
Gas stratification and mixing, PANDA, GOTHIC, Validation
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-164896OAI: oai:DiVA.org:kth-164896DiVA: diva2:806450
Conference
10th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10)
Note

NQC 20150420

Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2015-04-20Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Villanueva, WalterKudinov, Pavel

Search in DiVA

By author/editor
Hultgren, AnteGallego-Marcos, IgnacioVillanueva, WalterKudinov, Pavel
By organisation
Nuclear Power Safety
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 262 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf