Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer.
Show others and affiliations
2012 (English)In: Carcinogenesis, ISSN 0143-3334, E-ISSN 1460-2180, Vol. 33, no 8, 1502-11 p.Article in journal (Refereed) Published
Abstract [en]

MicroRNAs (miRNAs) play pivotal roles in stem cell biology, differentiation and oncogenesis and are of high interest as potential breast cancer therapeutics. However, their expression and function during normal mammary differentiation and in breast cancer remain to be elucidated. In order to identify which miRNAs are involved in mammary differentiation, we thoroughly investigated miRNA expression during functional differentiation of undifferentiated, stem cell-like, murine mammary cells using two different large-scale approaches followed by qPCR. Significant changes in expression of 21 miRNAs were observed in repeated rounds of mammary cell differentiation. The majority, including the miR-200 family and known tumor suppressor miRNAs, was upregulated during differentiation. Only four miRNAs, including oncomiR miR-17, were downregulated. Pathway analysis indicated complex interactions between regulated miRNA clusters and major pathways involved in differentiation, proliferation and stem cell maintenance. Comparisons with human breast cancer tumors showed the gene profile from the undifferentiated, stem-like stage clustered with that of poor-prognosis breast cancer. A common nominator in these groups was the E2F pathway, which was overrepresented among genes targeted by the differentiation-induced miRNAs. A subset of miRNAs could further discriminate between human non-cancer and breast cancer cell lines, and miR-200a/miR-200b, miR-146b and miR-148a were specifically downregulated in triple-negative breast cancer cells. We show that miR-200a/miR-200b can inhibit epithelial-mesenchymal transition (EMT)-characteristic morphological changes in undifferentiated, non-tumorigenic mammary cells. Our studies propose EphA2 as a novel and important target gene for miR-200a. In conclusion, we present evidentiary data on how miRNAs are involved in mammary cell differentiation and indicate their related roles in breast cancer.

Place, publisher, year, edition, pages
2012. Vol. 33, no 8, 1502-11 p.
National Category
Cell and Molecular Biology
Research subject
SRA - Molecular Bioscience
Identifiers
URN: urn:nbn:se:kth:diva-165356DOI: 10.1093/carcin/bgs161ISI: 000307781000009PubMedID: 22562546Scopus ID: 2-s2.0-84865312110OAI: oai:DiVA.org:kth-165356DiVA: diva2:808119
Note

QC 20150505

Available from: 2015-04-27 Created: 2015-04-27 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Authority records BETA

Williams, Cecilia

Search in DiVA

By author/editor
Williams, Cecilia
In the same journal
Carcinogenesis
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf